Incêndios de petróleo e pretoquímicos: biorremediação de áreas afetadas

Detalhes bibliográficos
Ano de defesa: 2015
Autor(a) principal: Montagnolli, Renato Nallin [UNESP]
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Estadual Paulista (Unesp)
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/11449/134062
http://www.athena.biblioteca.unesp.br/exlibris/bd/cathedra/13-01-2016/000856560.pdf
Resumo: From oilrigs extraction to transport and distribution of petrochemicals, there is always the risk of accidents resulting in fires. In such cases, the release of aqueous film forming foams (AFFF) are a usual practice. These compounds are comprised of compounds containing fluorine-carbon, which contribute to their fire extinguishing capabilities when released in large amounts. Tons of AFFF are released into the environment during emergencies and thus causing long term harnessing of the environment even long after the fire is extinguished, since such substances end up in water bodies. Fluorine and carbon bonds are highly resistant to degradation and therefore have long environmental persistence. Biodegradation pathways of organic halogens are quite specific and slow. In this study, we determined the potential microbiota in different biodegradation AFFF mixtures of hydrocarbons, and studied the biotransformation of compounds in the formulation of AFFF. Thus, it was possible to better understand the impact of fluorinated compounds into the environment. A wide variety of techniques was applied, involving a combination of mass spectrometry techniques to determine the biotransformation pathways of perfluorcarbonados components; respirometric techniques to study the biodegradability of AFFF in association with petroleum hydrocarbons; bio-assays to determine the phyto-toxicity of AFFF; and molecular biology techniques for metagenomic analyzes evaluating changes in the profile of soil microbial communities after AFFF was introduced in the medium. It was observed that petroleum hydrocarbons during application of fire foams fluorocarbon influenced the overall biotransformation process, altering the metabolism of the microbial communities. In general, the fluorocarbon biotransformation is slower by a mutual interference between AFFF and BTEX, but the CO2 production is increased by the effect of the perfluorinated surfactant combined with the ...