Detecção acústica de acometimento por Covid-19

Detalhes bibliográficos
Ano de defesa: 2023
Autor(a) principal: Rafael Motta Scarpa
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Estadual Paulista (Unesp)
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://hdl.handle.net/11449/251032
Resumo: Inegavelmente, a recente pandemia do COVID-19 alterou o cotidiano de todo o mundo. Nesse sentido, inúmeras estratégias foram e ainda têm sido pesquisadas para aprimorar a detecção da enfermidade, englobando exames hematológicos, diagnóstico por imagens, entre outros. Uma possibilidade, também explorada, consiste no pré-diagnóstico por meio da ausculta respiratória. Assim, visando automatizar esse processo e oferecer um auxílio ao profissional de saúde, com base em um processo apenas modestamente investigado, caracteriza-se o objetivo deste trabalho: projetar e implementar uma técnica de processamento inteligente de sinais para detectar, de modo não-invasivo e com base na análise acústica dos ruídos respiratórios, o acometimento por COVID-19, principalmente em estágios iniciais. Valendo-se de novos conceitos disponíveis na literatura, tais como aqueles pertinentes à Engenharia Paraconsistente de Características, o método desenvolvido, de modesto custo computacional, foi testado valendo-se de uma parcela da base de sinais pública COVID-19 Sounds App. Métricas promissoras e compatíveis com as expectativas foram obtidas: classificadores baseados em distâncias Euclidianas e Support Vector Machines (SVM) alcançaram plena acurácia e significantes valores de especificidade, sensibilidade e F1 score.