Detalhes bibliográficos
Ano de defesa: |
2016 |
Autor(a) principal: |
Paiva, Rodrigo Rodrigues da Cunha [UNESP] |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Estadual Paulista (Unesp)
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://hdl.handle.net/11449/148649
|
Resumo: |
O planejamento de sistemas de distribuição consiste em encontrar uma configuração otimizada, a um baixo custo, que permita manter a qualidade e confiabilidade do fornecimento de energia. Fontes de Geração Distribuída (GD) quando inseridas na rede alteram as suas características físicas e operacionais e tornam o problema de planejamento de curto prazo mais complexo para ser resolvido. Portanto, é importante desenvolver ferramentas computacionais eficientes para reduzir custos e o tempo na tomada de decisão para o setor de planejamento das empresas, indicando onde, quando e quais os tipos de componentes devem ser instalados e/ou substituídos nas redes de distribuição na presença de fontes de GD. Neste trabalho propõe-se uma metodologia para o planejamento de curto prazo para alocação das fontes de GD do tipo eólica (considerando as incertezas presentes neste tipo de fonte primária de energia), alocação de bancos de capacitores, dispositivos de proteção e controle, bem como a possibilidade de recondutoramento e troca de estruturas da rede de distribuição, mantendo-se os índices de qualidade para o fornecimento de energia dentro dos padrões estabelecidos pela agência reguladora. O problema de planejamento de curto prazo é formulado como um modelo de programação inteira multiobjetivo, o qual consiste em minimizar os custos de investimento e perdas técnicas na rede (energia não suprida e perdas ôhmicas nos condutores) e está sujeito a restrições físicas, econômicas e operacionais. Este problema é resolvido através de um algoritmo genético multiobjetivo baseado no Non-dominated Sorting Genetic Algorithm (NSGA-II), e a metodologia proposta e implementada foi testada em um sistema de distribuição real de 135 barras, e os resultados obtidos mostram eficácia e robustez da metodologia proposta. |