Detalhes bibliográficos
Ano de defesa: |
2021 |
Autor(a) principal: |
Ananias, Pedro Henrique Moraes [UNESP] |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Estadual Paulista (Unesp)
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://hdl.handle.net/11449/214487
|
Resumo: |
Globalmente, foram observadas nos últimos anos severas mudanças ambientais e climáticas. Neste cenário, destacam-se o aumento de eventos de floração de algas tóxicas, responsáveis pela degradação da qualidade da água e, principalmente, ameaça à saúde dos seres vivos. Estudos apontam para a necessidade de monitoramento e previsão desse fenômeno, os quais podem ser conduzidos segundo a concentração de clorofila. Perante esta motivação, utilizando-se técnicas de Aprendizado de Máquina e séries multitemporais de dados obtidos por Sensoriamento Remoto, foram desenvolvidos dois novos métodos capazes de proporcionar suporte à detecção e previsão de floração de algas. O primeiro visa a detecção automática do fenômeno e aplica conceitos de classificação de imagens por meio do emprego do algoritmo One-class Support Vector Machine. O segundo método é responsável por prever o seu surgimento. Como forma de evidenciar o potencial e viabilidade das propostas, os algoritmos foram aplicados em estudos de caso em áreas suscetíveis à ocorrência de floração de algas tóxicas. |