Transições de fase em sistemas dinâmicos não lineares

Detalhes bibliográficos
Ano de defesa: 2024
Autor(a) principal: Silveira, Felipe Augusto Oliveira [UNESP]
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: UNESP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://hdl.handle.net/11449/257032
Resumo: Neste trabalho estudamos as transições de fase que ocorrem em sistemas dinâmicos não lineares devido à variação de parâmetros de controle. Em uma transição de fase de segunda ordem, ou transição de fase contínua, a variável dinâmica que identifica o parâmetro de ordem vai a zero continuamente à medida que o equivalente da susceptibilidade do parâmetro de ordem diverge em tal limite. Nesse caso, próximo à transição de fase os observáveis que caracterizam a dinâmica são descritos por leis de potência levando, muitas vezes, a dinâmica a ser invariante de escala. Tal invariância é uma das características presentes em uma transição de fase contínua. Inicialmente, utilizaremos um modelo de dipolos clássicos para ilustrar a presença de uma transição de fase em sistemas dinâmicos. Em seguida, abordaremos dois sistemas não lineares, um bilhar exótico e o bilhar ovóide. O primeiro é uma versão do modelo bouncer em que o campo no qual a partícula está inserido não é homogêneo. O mapa do sistema foi construído para fornecer a velocidade da partícula e a fase da parede após cada colisão. Para certas combinações de valores de parâmetros e condições iniciais a dinâmica apresenta comportamento caótico. Os pontos fixos e suas estabilidades tam- bém foram encontrados numericamente para valores diferentes de parâmetro. Finalmente, estudamos a transição do regime integrável para o não integrável utilizando análise de escala e caracterizamos essa transição identificando a quebra de simetria, o parâmetro de ordem, as excitações elementares e os defeitos topológicos. Por último, estudamos o bilhar ovóide com o intuito de caracterizar a transição do regime de crescimento ilimitado de energia para o crescimento limitado. Utilizamos a equação de difusão para obter analiticamente uma expressão para a probabilidade de encontrar uma partícula com velocidade V em um determinado tempo n. A partir dessa probabilidade, foi possível obter outros observáveis, como a velocidade média, que foi utilizado para identificar um possível parâmetro de ordem desta transição. Além disso, discutimos outras conexões com fenômenos típicos de transições de fase que ocorrem na física estatística e termodinâmica.