Uso de cascas de laranja como adsorvente de contaminantes no tratamento de água

Detalhes bibliográficos
Ano de defesa: 2015
Autor(a) principal: Santos, Carolina Monteiro [UNESP]
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Estadual Paulista (Unesp)
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/11449/122100
Resumo: This study aimed to characterize and evaluate the potencial use of dried and pyrolyzed orange peel, Pear variety (Citrus sinensis) as an adsorbent material of inorganic contaminants Zinc (Zn), Aluminum (Al), Cadmium (Cd), Copper (Cu), Nickel (Ni), Lead (Pb) and organic ethylbenzene. The analysis of scanning electron microscopy (SEM) and surface area (BET) showed that the materials have porous and heterogeneous surfaces, with the increase of these characteristics with increasing pyrolysis temperature. The large number of peaks in infrared spectroscopic analysis with a Fourier transform (FTIR) showed the presence of complex materials with alcohols, phosphate and amine and carboxylic groups, these elements also found by analysis of X-ray diffraction (XRD). The thermal analysis in an oxidizing atmosphere of dry peel showed three weight loss events held in the inert atmosphere showed three pyrolysis events. The activation energy (Ea) of dry peel was calculated by the method of Osawa-Flynn-wall where it was found that the Ea analyzed under oxidizing atmosphere is clearly higher than Ea found under inert atmosphere. The thermodynamic study indicated that the adsorption processes studied are exothermic and contaminant-adsorbent interactions occurred spontaneously. The enthalpy values, all less than 40 kJ / mol, indicated that the adsorption processes are of a physical nature. It was observed that the Gibbs free energy decreases with increasing temperature, indicating that the adsorption process is more favorable at higher temperatures. The tests indicated the potential use of orange peels and its pyrolysis as adsorbent material