Detalhes bibliográficos
Ano de defesa: |
2023 |
Autor(a) principal: |
Marra, Túlio Mazetti |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Estadual Paulista (Unesp)
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://hdl.handle.net/11449/250211
|
Resumo: |
A predição de produtividade da soja é uma informação importante para dar suporte a gestão de culturas, determinando o momento e local de colheita, agregando valor ao produto colhido. No entanto, esta tarefa é um desafio, uma vez que a combinação perfeita de características espectrais e algoritmos de Aprendizado de Máquina (ML) para predizer a produtividade das culturas não é amplamente conhecida. Para resolver esse quebra-cabeça, o objetivo deste estudo foi trabalhar com imagens multiespectrais de satélite de alta resolução para identificar algumas das melhores características para a predição de produtividade da soja, tais como estádios fenológicos para a coleta de imagens, algoritmos de predição e índices de vegetação (VI's) que compõe tais algoritmos. A metodologia foi explorada como forma de análise não-invasiva e não-destrutiva. A base de dados foi composta por um conjunto de imagens temporais e dados de produtividade de três cultivares de soja, produzidas em duas safras diferentes. Primeiramente, as imagens foram processadas e calculados os VI's para cada estádio fenológico de coleta das imagens, que foram de R4 a R7. Os VI's utilizados foram NDVI, GNDVI, VARI, SAVI e EVI. Em seguida, os VI’s foram aplicados em modelos de regressão linear, Random Forest (RF) e Redes Neurais Artificiais (ANN) para predizer a produtividade da soja. MAE, MAPE e RMSE foram utilizados como métricas de acurácia. Nossos resultados mostraram que o modelo que apresentou melhor desempenho em relação à precisão e acurácia para prever a produtividade da soja foi baseado em ANN usando NDVI e GNDVI nos estádios fenológicos R5 e R4, respectivamente, provando assim ser uma alternativa precoce para apoiar decisões precisas nos campos de soja. |