Detalhes bibliográficos
Ano de defesa: |
2014 |
Autor(a) principal: |
Castilho, Wagner Maciel [UNESP] |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Estadual Paulista (Unesp)
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://hdl.handle.net/11449/95834
|
Resumo: |
Neste trabalho são analisadas as equaçoes de Dirac r Klein-Gordon com a estrutura de Lorentz mais geral para potenciais externos em 3 + 1 dimensões de espaço-tempo e correspondentes limites não relativisticos para o potencial eletromagnético, obtendo-se as equaçoes de Pauli para partículas de spin 1/2 e de Schrödinger para partículas de spin 0, respectivamente. Ainda na equação de Dirac em 1+1 dimensões s]ao discutidas as transformações: conjugação de carga, transformação quiral e transformação quiral contínua. Esta última transformação juntamente com a criação de um vínculo entre os potenciis escalar e vetorial permitiram desacoplar e mapear as soluções do componente superior do espinor de Rirac sob a perspectiva de um problema de Sturm-Liouville. O problema intrinsicamente relativístico de férmions massivos e não massivos em 1+1 dimensões sujeitos a potenciais degrau abrupto e degrau suave é considerado com uma mistura vetorial e escalar na estrutura de Lorentz com o acoplamento escalar maior ou igual ao acoplamento vetorial... |