Detalhes bibliográficos
Ano de defesa: |
2023 |
Autor(a) principal: |
Silva, Carolina Aparecida |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Estadual Paulista (Unesp)
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://hdl.handle.net/11449/250738
|
Resumo: |
Muitos métodos estatísticos vêm sendo desenvolvidos para auxiliar no estudo de variáveis distribuídas no espaço, com o avanço da tecnologia, modelos de estrutura complexa conseguem descrever melhor a realidade. O presente trabalho abordou a estatística espacial. Além da regressão linear clássica, dois modelos espaciais, que incorporam a autocorrelação espacial presente nos dados, foram definidos, sendo eles o modelo SAR(Simultaneous Autoregressive Models) e o SEM(Simultaneous Error Models). Através deles, foi possível analisar os dados de criminalidade da região do Comando de Policiamento do Interior-9 (CPI-9). Com base na literatura recente, diferentes abordagens espaço-temporais são analisadas e constituem as três técnicas propostas. Esses modelos visam mapear uma doença, entender seu comportamento ao longo dos anos, identificar áreas de alto risco e capturar a estrutura espacial e temporal. Cada técnica ajustou melhor cada uma das variáveis respostas, são elas roubos de carros, outros roubos e homicídios. |