Comparação do desempenho de modelos de regressão em conjuntos de dados espacialmente distribuídos

Detalhes bibliográficos
Ano de defesa: 2023
Autor(a) principal: Silva, Carolina Aparecida
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Estadual Paulista (Unesp)
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/11449/250738
Resumo: Muitos métodos estatísticos vêm sendo desenvolvidos para auxiliar no estudo de variáveis distribuídas no espaço, com o avanço da tecnologia, modelos de estrutura complexa conseguem descrever melhor a realidade. O presente trabalho abordou a estatística espacial. Além da regressão linear clássica, dois modelos espaciais, que incorporam a autocorrelação espacial presente nos dados, foram definidos, sendo eles o modelo SAR(Simultaneous Autoregressive Models) e o SEM(Simultaneous Error Models). Através deles, foi possível analisar os dados de criminalidade da região do Comando de Policiamento do Interior-9 (CPI-9). Com base na literatura recente, diferentes abordagens espaço-temporais são analisadas e constituem as três técnicas propostas. Esses modelos visam mapear uma doença, entender seu comportamento ao longo dos anos, identificar áreas de alto risco e capturar a estrutura espacial e temporal. Cada técnica ajustou melhor cada uma das variáveis respostas, são elas roubos de carros, outros roubos e homicídios.