Caracterização de voice spoofing para fins de verificação de locutores com base na transformada wavelet e na análise paraconsistente de características

Detalhes bibliográficos
Ano de defesa: 2021
Autor(a) principal: Furlan, André
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Estadual Paulista (Unesp)
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/11449/214428
Resumo: Voice spoofing é uma estratégia genérica utilizada para burlar sistemas de autenticação biométrica baseados em identificação por voz. Dentre as diversas possibilidades específicas, os ataques do tipo playback speech são os que têm recebido considerável atenção da comunidade científica. Assim, por meio da decomposição dos sinais de voz com wavelets e posterior análise das respectivas sub-bandas espectrais BARK e MEL, este trabalho dedica-se a determinar qual a melhor combinação BARK/MEL-wavelet para que se obtenha uma separação máxima entre duas classes: Locuções genuínas e falseadas. Após a apuração da melhor combinação de descritores, realizada por meio da Análise Paraconsistente, os vetores de características oriundos dos sinais de voz são submetidos a ensaios de classificação, variando-se o tamanho do conjunto de treinamento e testes. Utilizando as distâncias Euclidiana e Manhattan, além de Máquinas de Vetores de Suporte (SVM), a acurácia máxima obtida foi de 99,7561% para uma base com 820 sinais, a qual considera-se como um resultado promissor frente àqueles existentes na literatura.