Detalhes bibliográficos
Ano de defesa: |
2015 |
Autor(a) principal: |
Vega Chacon, Jaime Ricardo [UNESP] |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Estadual Paulista (Unesp)
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://hdl.handle.net/11449/124486
|
Resumo: |
Magnetic nanoparticles of iron oxide have been intensively investigated for biomedical applications due to their magnetic properties and dimensions which are smaller than the size of cells. The surface of iron oxide nanoparticles must be modified to obtain colloidal stability in water, biocompatibility and allow the formation of linkages with molecules with biological activity. Poly(aspartic acid) is obtained by basic hydrolysis of polysuccinimide, the polymer is water soluble, biodegradable and biocompatible, due to these features, the polymer attractive for biomedical applications. Poly(aspartic acid) hydrogel is sensitive to environmental pH, when the pH of the environment changes, the hydrogel is subjected to a change in volume. This work consists in the surface modification of magnetite nanoparticles with poly(aspartic acid) hydrogel, forming a multifunctional system responsive to an external magnetic field and the environmental pH, and with the necessary characteristics for applications in biomedicine. The magnetite nanoparticles were synthesized by coprecipitation method and polysuccinimide by polycondensation method. The surface modification of the nanoparticles is developed in the following steps: (1) coating the surface with silica functionalized with amine groups, (2) coating with chemically cross-linked polysuccinimide, (3) basic hydrolysis of the cross-linked polysuccinimide to obtain the poly(aspartic acid) hydrogel on the surface of magnetic nanoparticles. The obtained products were analyzed by the following techniques: X-ray diffraction, diffuse reflectance infrared spectroscopy, hydrogen-1 nuclear magnetic resonance spectroscopy, dynamic light scattering, electrophoretic mobility (zeta potential) and transmission electron microscopy. The influence of the concentrations of the reactants in the dimensions of the multifunctional system was evaluated. The hydrodynamic diameter of the... |