Detalhes bibliográficos
Ano de defesa: |
2017 |
Autor(a) principal: |
Coronado Villalobos, Carlos Hugo [UNESP] |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Estadual Paulista (Unesp)
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://hdl.handle.net/11449/150120
|
Resumo: |
Na presente tese abordaremos quatro tópicos importantes: espinores, covariantes bilineares, classificação de Lounesto e o teorema da inversão. Apresentamos a construção de covariantes bilineares para o espinor Elko e mostraremos a necessidade da deformação dos elementos da base da álgebra de Clifford com a finalidade de que as identidades de Fierz-Pauli-Kofink sejam satisfeitas. Estudamos também os ingredientes principais da classificação de espinores elaborada por Lounesto. Por último, construiremos três novas classes de espinores via o teorema da inversão a partir da premissa que o covariante bilinear $J_{\mu}$ seja nulo. Como consequência desta consideração esses novos espinores não possuem a dinâmica de Dirac, haja visto que $J_{\mu}$ na teoria de Dirac representa a corrente conservada. O surgimento de apenas três novas classes de espinores é uma consequência direta da imposição de que as identidades de Fierz-Pauli-Kofink sejam satisfeitas. |