Detalhes bibliográficos
Ano de defesa: |
2012 |
Autor(a) principal: |
Santos, Carlos da Silva dos [UNESP] |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Estadual Paulista (Unesp)
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://hdl.handle.net/11449/87546
|
Resumo: |
O efeito de confinamento quântico é proposto neste trabalho como a causa do deslocamento do espectro vibracional de grupos moleculares sob a formação de ligação de hidrogênio. Essa ligação deve impor uma barreira ao hidrogênio e impedir que ele tenha liberdade no seu movimento oscilatório. O objetivo é estudar as transições vibracionais dos grupos moleculares NH e OH quando estão livres (sem a formação da ligação de hidrogênio) e quando estão confinados (sob a formação da ligação de hidrogênio). As vibrações dos grupos unidos por ligações de hidrogênio têm caráter altamente direcional, portanto utiliza-se o potencial de Morse unidimensional para descrever os sistemas estudados. As autoenergias são obtidas via método variacional. As autofunções utilizadas nesse método são obtidas por meio da Mecânica Quântica Supersimétrica (MQS). Para chegar à energia emitida/absorvida pelo grupo, calcula-se a energia do estado fundamental (n=0) e de estados excitados (n=1, para NH e OH, e n=2, para o OH). A diferença entre os níveis fornece a energia cedida/recebida pelo grupo. Os resultados do caso livre e do caso confinado são comparados entre si e posteriormente com os dados experimentais. A partir dos resultados obtidos pode-se inferir que o confinamento quântico é suficiente para descrever o deslocamento do espectro observado |