Detalhes bibliográficos
Ano de defesa: |
2020 |
Autor(a) principal: |
Gualberto, Juliana Aparecida |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Estadual Paulista (Unesp)
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://hdl.handle.net/11449/192308
|
Resumo: |
O Kernel e a Krigagem Indicativa são duas técnicas utilizadas na análise espacial para estimar a ocorrência de determinado fenômeno em uma área de estudo. Com o conhecimento da distribuição espacial para casos de doenças epidêmicas é possível criar estratégias de controle de transmissão. O objetivo deste trabalho foi estudar ambas técnicas de estatística espacial usando conjuntos de dados epidemiológicos, dengue e malária, de duas cidades, Rio Claro-SP e Porto Velho-RO, respectivamente, a fim de observar os locais com maiores ocorrências e exemplificar para comparação das técnicas para verificar qual teve melhor precisão nas predições. A partir desses resultados é possível verificar as áreas em que ocorreram os casos e tomar providências para diminuição ou erradicação das mesmas. A técnica Krigagem Indicativa gerou mapas que representam a probabilidade do valor de corte a ser superado e a técnica kernel gerou mapas que representam a intensidade de ocorrência em cada ponto. Ambas foram eficientes ao mostrar as áreas de concentração das endemias, mas a falta de variáveis adicionais nos bancos de dados, nos impôs algumas limitações ao fazer as comparações das técnicas; com isso, o melhor meio de compará-las foi através dos critérios de informação Akaike (AIC) e Bayesiano (BIC). Os valores encontrados nos critérios de informação para ambas as técnicas foram condizentes com os encontrados na literatura, mas para uma comparação não foi tão eficaz, pois apresentou valores muito distantes, porém com um critério visual dos mapas, umas das técnicas se destacou para os dois conjuntos de dados. Ao final concluímos que essas técnicas não são comparáveis, mas sim complementares, pois a técnica Kernel mostrou a intensidade das endemias e a técnica Krigagem Indicativa mostrou a probabilidade desses valores serem maiores que um ponto de corte determinado. |