Detalhes bibliográficos
Ano de defesa: |
2018 |
Autor(a) principal: |
Gonçalves, Robson R. de Oliveira |
Orientador(a): |
Girardi, Alessandro |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal do Pampa
|
Programa de Pós-Graduação: |
Mestrado Acadêmico em Engenharia Elétrica
|
Departamento: |
Campus Alegrete
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
http://dspace.unipampa.edu.br:8080/jspui/handle/riu/3962
|
Resumo: |
Com o crescimento computacional ocorrido nos último anos, surgem questões e problemas relacionados ao custo de energia principalmente em ambientes computacionais de grande porte como data centers ou centros de processamento de alto desempenho pois exigem grande demanda de energia para manter seu funcionamento. Na área da Computação de Alto Desempenho (HPC), acompanhando esta necessidade surgem novos paradigmas computacionais para suportar o aumento exponencial de núcleos de processadores, mudando de modelos e arquiteturas multicore onde centralizavam o processamento somente nas CPUs para novas arquiteturas heterogêneas e manycore que distribuem o processamento utilizando GPUs e coprocessadores. A relação desempenho com consumo de energia eficiente em arquiteturas manycore ainda é tema recente e existem muitos questionamentos que precisam ser explorados, pois juntamente com o aumento do número de cores surgiram vários modelos de programação. É preciso maior estudo sobre consumo de energia em modelos que usam e gerenciam cargas de trabalho parte em CPUs e parte em GPUs/coprocessadores. Nesse contexto, o objetivo geral deste trabalho é realizar um estudo e metodologia sobre a relação desempenho e consumo de energia em coprocessadores Intel Xeon Phi, analisando e identificando quais os principais fatores que afetam diretamente o consumo eficiente de energia em ambientes manycore. A avaliação baseada no comportamento e variação do consumo de energia durante execução dos benchmarks LINPACK, HPL 2.1 e HPCG sobre os modelos de programação host, offload, native e simétrico pela Intel. A metodologia utilizada consiste em processos de planejamento dos cenários, execução, monitoramento, coleta, medição e análise dos dados de consumo energético e desempenho sobre os resultados gerados e principalmente das definições dos critérios avaliados, quais métricas utilizadas e modelos de cenários utilizados. As principais contribuições deste trabalho são: Avaliar quais modelos de programação proporcionam melhores resultados com consumo eficiente sem comprometer o desempenho; Analisar e identificar se o comportamento de recursos e configurações de memória compartilhada, número de nodes, cores, processos e threads impactam diretamente na relação desempenho e consumo de energia. Resultados mostram que existe grande variação no desempenho e consumo de energia entre os modelos e a importância da escolha e configuração adequada dos fatores utilizados durante o processamento de aplicações paralelas. Considerando cenários de memória compartilhada sobre benchmark Linpack, os modelos host e offload apresentam aumento linear no desempenho para cargas de trabalho (size) até 10000 e leve incremento após este valor. Mas o modelo nativo apesar de menor desempenho nestes cenários, em contrapartida consome menos energia e principalmente mais favorável para aplicações com alto grau de paralelismo. |