Metodologia de análise de sistemas de proteção com controle distribuído através da ferramenta de modelagem e verificação formal estatística
Ano de defesa: | 2017 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | , , |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Estadual do Oeste do Paraná
Foz do Iguaçu |
Programa de Pós-Graduação: |
Programa de Pós-Graduação em Engenharia Elétrica e Computação
|
Departamento: |
Centro de Engenharias e Ciências Exatas
|
País: |
Brasil
|
Palavras-chave em Português: | |
Palavras-chave em Inglês: | |
Área do conhecimento CNPq: | |
Link de acesso: | http://tede.unioeste.br/handle/tede/3398 |
Resumo: | The main line of research of this work is the study of approaches for supporting the development and analysis of the Power System Protection. In general, this process is carried out through of a large number of simulations involving various operating scenarios. The main limitation of this technique is the impossibility of coverage of all behavior of the system under analysis. In this context, this work proposes the use of Model Checking as a tool to support the procedure of development of power system protection schemes, principally in the sense of proving the security requirements and temporal deterministic expected behavior. Model Checking is a verification technique that explores exhaustively and automatically all possible system states, checking if this model meets a given specification. This work focuses on this two pillars of the Model Checking: to choose an appropriate modeling formalism for representation of the power system protection and how to describe the specification in temporal-logic for the verification process. With regard to the modeling formalism, the power system protection will be represented by the Hybrid Automata theory, while the verification tool adopted will be Statistical Model Checking, by the UPPAAL STRATEGO toolkit. It is underlined that this work is limited to the modeling of individual components of the power system protection, such that 18 models of the devices and protocols like communication bus (LAN), time synchronization protocol (PTP) and IEC 61850 communication protocols (SV and GOOSE) and Logical Nodes of power system protection, and 13 auxiliaries models, which emules the stochastic behavior to subsidise the verification process. The methodology of modelling adopted guarantees the effective representation of the components behaviour of power system protection. For this, the results of Model Checking process were compared with behavioral requirements defined by standards, conformance testings and paper related to the area. With regard to the contributions of this work, were identified three researches areas that could use the models developed in this work: i) implementation of power system protection schemes; ii) achievement of conformance testing; and iii) indication of the parameterization error of the power protection system scheme. |