Avaliação do ciclo de vida energético e de emissões de CO2 de sistemas de vedações para uma habitação rural de interesse social

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Silva , Renathielly Fernanda da lattes
Orientador(a): Prior, Maritane lattes
Banca de defesa: Mukai, Hitomi lattes, Costanzi, Ricardo Nagamine lattes
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Estadual do Oeste do Paraná
Cascavel
Programa de Pós-Graduação: Programa de Pós-Graduação em Engenharia de Energia na Agricultura
Departamento: Centro de Ciências Exatas e Tecnológicas
País: Brasil
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: http://tede.unioeste.br/handle/tede/3489
Resumo: Civil construction is responsible for a large part of the world's energy consumption, and consequently also for carbon dioxide emissions, since these are directly related to the generation of energy. Life cycle assessment (LCA) is a tool that allows computing the inputs and outputs of a variable in a product, process or part of it, considering the phase of pre-use, use and post-use. In this work the energy flow and the carbon dioxide emissions in internal and external vertical sealing systems (SVVIEs) of a rural residence of social interest were analyzed. The methodology proposed by the NBR ISO 14040 - Environmental management - Life cycle assessment - Principles and structure was adopted to perform energy life cycle assessment (ACVE) and the carbon cycle life cycle assessment (ACVCO2) of these systems. , delimiting the system as a case study for the municipality of Cascavel - Paraná. In this case study, four scenarios were considered, where scenario 1 corresponds to the conventional sealing system, with reinforced concrete structure and ceramic blocks and the other scenarios are alternative systems that are still gaining space in the Brazilian market. Scenario 2 corresponds to structural masonry with concrete blocks, scenario 3 is equivalent to steel framing and scenario 4 is equivalent to the walls of reinforced concrete cast in place. Analyzing the life cycle of the four scenarios it was observed that scenario 1 requires 3.19 GJ / m², scenario 2 requires 2.89 GJ / m², scenario 3 requires 3.47 GJ / m² and scenario 4 requires 2.60 GJ / m², considering that for this there are 100 uses of the form of virgin aluminum. However if we consider the energy that is used with equipment during the use of the building scenario 1 consumes 19.52 GJ / m², scenario 2 requires 19.22 GJ / m², scenario 3 requires 19.20 GJ / m² and the scenario demands 18.93 GJ / m². Analyzing the CO2 emissions during the life cycle of these SVVIEs, it was concluded that for this case scenario scenario 1 emits 0.22 t.CO2 / m² of construction, scenario 2 emits 0.21 t.CO2 / m² of construction , scenario 3 emits 0.18 t.CO2 / m² of construction and scenario 4 emits 0.15 t.CO2 / m² of construction. When considering emissions from the use, the following values are given: 0.61 t.CO2 / m² for scenario 1, 0.60 t.CO2 / m² for scenario 2, 056 t.CO2 / m² for the scenario 3 and 057 t.CO2 / m² for scenario 4. In this way scenario 4 was the most sustainable before the parameters analyzed.