Abordagem de espaço de estados no relacionamento entre atributos físicos do solo e produtividade do trigo

Detalhes bibliográficos
Ano de defesa: 2007
Autor(a) principal: Corrêa, Ademir Natal lattes
Orientador(a): Tavares, Maria Hermínia Ferreira lattes
Banca de defesa: Opazo, Miguel Angel Uribe lattes, Zara, Reginaldo Aparecido lattes, Timm, Luís Carlos lattes
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Estadual do Oeste do Parana
Programa de Pós-Graduação: Programa de Pós-Graduação "Stricto Sensu" em Engenharia Agrícola
Departamento: Engenharia
País: BR
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: http://tede.unioeste.br:8080/tede/handle/tede/211
Resumo: The objective of this study was to assess the relationship among soil physical attributes and their influences on wheat yield. For this purpose an estimating method, called State-Space Model or dynamic linear regression model, was used and compared to simple and multiple regression models of classical statistics. Experimental data were obtained at a Rhodic Ferralsol, originated from UNIOESTE Agricultural Engineering Experimental Nucleus Cascavel Campus, in an area where wheat was grown. In this area, 3 equally spaced transects, with 97 sampling points, 3.0 meters away from each other, were delimited. The State-Space approach was used to assess wheat yield estimate on position i, influenced by wheat yield, bulk density, soil compaction degree and soil resistance to penetration on position i-1 in different combination between data series of these variables. Applying the State-Space approach, all the response variables presented significant correlation with the dependent variable: soil resistance to penetration was the attribute with the best correlation, presenting R2 coefficient equal to 0.849. The other attributes had R2 coefficient of around 0.800. Comparing to conventional static models, soil resistance to penetration attribute had R2 coefficient equal to 0.102. The other attributes had R2 coefficient equal or less than 0.087, in conventional regression. Utilizing the State-Space approach, the two combinations that indicated the best results were: 1) between wheat yield and soil resistance to penetration that showed the best estimate to wheat yield with R2 coefficient equal to 0.849, while the same combination in conventional regression presented R2 equal to 0.102; 2) between wheat yield, soil compaction degree and soil resistance to penetration, with R2 coefficient equal to 0.836, while the same combination in classical regression presented R2 equal to 0.217. Thus, it is possible to show the advantage of the State-Space approach in relation to other more conventional regression methods for estimating and forecasting in soil-plant system relationship.