Calcário dolomítico como agente alcalinizante no tratamento anaeróbio de água residuária de fecularia

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Palma, Denise lattes
Orientador(a): Gomes, Simone Damasceno lattes
Banca de defesa: Mees, Juliana Bortoli Rodrigues lattes, Fazolo, Ajadir lattes, Costa, Mônica Sarolli Silva de Mendonça lattes, Gotardo, Jackeline Tatiane lattes
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Estadual do Oeste do Parana
Programa de Pós-Graduação: Programa de Pós-Graduação "Stricto Sensu" em Engenharia Agrícola
Departamento: Engenharia
País: BR
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: http://tede.unioeste.br:8080/tede/handle/tede/241
Resumo: The wastewater of cassava industry is a resultant effluent from the processing of cassava starch extraction and has a high pollution potential due to its high organic load concentration. Its treatment via anaerobic digestion, in addition to removing organic matter, enables biogas and biofertilizer production. However, the anaerobic system efficiency requires control of alkalinity to keep appropriate levels of pH for methanogenic activity. Alkalinity monitoring is required because its wastewater from starch manufacturer has high potential for acidification, due to the presence of high concentrations of fast fermentation of sugars. This feature can be responsible for increasing acidity levels and can cause problems for methanogenesis. Some chemicals may be applied in digesters in order to provide alkalinity to the anaerobic environment. However, some of them cause problems for digestion or digesters. Thus, in order to avoid these problems, this study tested the effects of different amounts of dolomitic limestone on an anaerobic treatment system of wastewater from cassava industry. Two horizontal-methanogenic reactors with a useful 3.38-liter volume were studied. The relation between mass of dolomitic limestone and working volume was 1:2 in the reactor A and 1:4 in reactor B. The limestone were standardized so that they had diameters varying from 9.5 to 11.2 mm. They were arranged in the initial portion of the reactors, where wastewater came through. After the stabilization period of treatment systems six volumetric organic loads were consecutively applied (2.30; 3.01; 4.31; 5.69; 7.71 and 8.54 gCOD.L-1.d -1), with their respective hydraulic retention times (4.02; 3.07; 2.05; 1.69; 1.69 and 1.13 days). It was observed, for each increase of volumetric organic load that both reactors required the same period for stabilization. The statistical results of the studied parameters (pH, partial alkalinity, intermediate alkalinity, total alkalinity, volatile acidity, ratio VA/TA, ratio IA/PA, calcium, magnesium, volatile organic acids, chemical oxygen demand, number of total solids, biogas and methane, nitrogen, phosphorus, potassium, copper, zinc, nickel, iron and manganese) showed that there were significant differences between the two reactors (based on ratios of the tested limestone) only in relation to Mg2+ and TS. However, there were significant differences between the organic loads applied in each reactor in relation to parameters such as PA, TA, VA, VA/TA, Ca2+, Mg2+, removal of total COD, removal of filtered COD, TS, TFS, TVS, biogas production, methane production, and specific methane production. These differences indicate that the best results regarding the main monitoring parameters of an anaerobic system occurred in treatments 2.30, 3.01 and 4.31 g COD L-1 d-1, with pH values above 8.0; higher concentrations of alkalinity due to bicarbonate and total alkalinity (above 1500 mg CaCO3 L-1). These data closely matched to the highest concentration of magnesium ions in the effluent of reactors (67.28 to 114.90 mg L-1); COD removals were above 90%; methane percentages in biogas varied from 73 to 76%; the highest averages of specific production of biogas were from 0.31 to 0.49 Lbiogas g CODconsumed) and specific methane production (0.22 to 0.29 Lmethane g CODconsumed). Finally, it can be concluded that different amounts of limestone rocks had no influence on the treatment process in the two studied reactors. Thus, we recommend the use of fewer amount of them since there is a greater useful volume in the reactor. However, the release of calcium and magnesium ions in both reactors assured an alkalinity supply