Identificação não-paramétrica de sistemas mecânicos usando filtros de Kautz

Detalhes bibliográficos
Ano de defesa: 2013
Autor(a) principal: Scussel, Oscar lattes
Orientador(a): Silva, Samuel da
Banca de defesa: Lee, Huei Diana lattes, Oliveira, Gustavo Henrique da Costa lattes
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Estadual do Oeste do Parana
Foz do Iguaçu
Programa de Pós-Graduação: Programa de Pós-Graduação em Engenharia de Sistemas Dinâmicos e Energéticos
Departamento: Centro de Engenharias e Ciências Exatas
País: BR
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: http://tede.unioeste.br:8080/tede/handle/tede/1066
Resumo: Impulse Response Functions (IRFs) are important in many engineering applications, mainly in structural dynamics and modal analysis involving experimental modal tests. These IRFs can be identified through several methods. Among these, the classical covariance method is one of the most used and it is based on the sum of convolution from the correlation functions between input and output signals known. However, this method is limited because it employs a large number of samples and has drawbacks related to over parametrization. In this sense, this work presentes and review the covariance method expanded in the ortonormal basis Kautz functions, because this alternative way allows to avoid these drawbacks. In order to ilustrate the procedure an algorithm with multiple objective functions to obtain the optimal poles of the Kautz filter is shown. The results are provided through three degree-of-freedom mechanical system simulated and experimental data in a beam to show the advantages, drawbacks, simplicity and efficiency of the proposed approach.