Mapeamento semiautomático por meio de padrão espectro-temporal de áreas agrícolas e alvos permanentes com evi/modis no Paraná

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: Verica, Weverton Rodrigo lattes
Orientador(a): Johann, Jerry Adriani lattes
Banca de defesa: Johann, Jerry Adriani lattes, Silva Junior, Carlos Antonio da lattes, Mercante , Erivelto lattes, Gurgacz, Flávio lattes
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Estadual do Oeste do Paraná
Cascavel
Programa de Pós-Graduação: Programa de Pós-Graduação em Engenharia Agrícola
Departamento: Centro de Ciências Exatas e Tecnológicas
País: Brasil
Palavras-chave em Português:
KDD
Palavras-chave em Inglês:
KDD
Área do conhecimento CNPq:
Link de acesso: http://tede.unioeste.br/handle/tede/3916
Resumo: Knowledge of location and quantity of areas for agriculture or either native or planted forests is relevant for public managers to make their decisions based on reliable data. In addition, part of ICMS revenues from the Municipal Participation Fund (FPM) depends on agricultural production data, number of rural properties and the environmental factor. The objective of this research was to design an objective and semiautomatic methodology to map agricultural areas and targets permanent, and later to identify areas of soybean, corn 1st and 2nd crops, winter crops, semi-perennial agriculture, forests and other permanent targets in the state of Paraná for the harvest years (2013/14 to 2016/17), using temporal series of EVI/Modis vegetation indexes. The proposed methodology follows the steps of the Knowledge Discovery Process in Database – KDD, in which the classification task was performed by the Random Forest algorithm. For the validation of the mappings, samples extracted from Landsat-8 images were used, obtaining the global accuracy indices greater than 84.37% and a kappa index ranging from 0.63 to 0.98, hence considered mappings with good or excellent spatial accuracy. The municipal data of the area of soybean, corn 1st crop, corn 2nd crop and winter crops mapped were confronted with the official statistics obtaining coefficients of linear correlation between 0.61 to 0.9, indicating moderate or strong correlation with the data officials. In this way, the proposed semi-automatic methodology was successful in the mapping, as well as the automation of the process of elaboration of the metrics, thus generating a script in the software R in order to facilitate future mappings with low processing time.