Discriminação de população por meio de inteligência computacional

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Carvalho, Vitor Prado de
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Viçosa
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.locus.ufv.br/handle/123456789/8259
Resumo: É importante para a preservação da variabilidade genética e da biodiversidade a correta classificação dos indivíduos. As técnicas de estatística multivariada comumente utilizada nessas situações são as funções discriminantes de Fisher e de Anderson, que permitem alocar um indivíduo inicialmente desconhecido em uma das g populações prováveis ou grupos pré-definidos. Entretanto, para o caso de populações não linearmente separáveis, esses métodos tem se mostrado pouco eficientes devido ao fato de não conseguir detectar a diferença entre as populações. Em alguns casos é preciso captar o máximo de informação possível e para tal outro método é necessário quando não for possível adquirir resultados pelos métodos multivariados. Portanto uma alternativa como possível solução para tal finalidade são as redes neurais artificiais, utilizadas em diversos problemas da Estatística, como agrupamento de indivíduos similares, previsão de séries temporais e em especial, os problemas de classificação. Outra técnica computacional que também vem adquirindo credibilidade e grande atenção nos últimos anos é conhecida como Máquina de Vetor Suporte (Support Vector Machines - SVMs). As SVMs vêm sendo utilizadas em diversas tarefas de reconhecimento de padrões, obtendo resultados superiores ou similares aos alcançados por técnicas similares em várias aplicações como em detecção de faces em imagens e na categorização de textos. Diante do exposto, o objetivo deste trabalho é avaliar a utilização da máquinas de vetores suporte em problemas de discriminação de populações com estruturas genéticas conhecidas. Além disso, os resultados obtidos pela técnica foram comparados com aqueles advindos de análises discriminante de Anderson e redes neurais. Cada população foi caracterizada por um conjunto de elementos mensurados por características de natureza contínua. Foram geradas considerados 50 locos independentes, cada qual com dois alelos. As relações de parentescos e a estruturação hierárquica foram estabelecidas considerando populações genitoras geneticamente divergentes, híbrido F 1 e três gerações de retrocruzamentos em relação a cada um dos genitores, permitindo estabelecer parâmetros de eficácia das metodologias testadas. Os dados fenotípicos das populações foram utilizados para estabelecimento da função discriminante de Anderson e para o cálculo da taxa de erro aparente (TEA), que mede o número de classificações incorretas. As estimativas de TEA foram comparadas com as obtida por meio das Redes Neurais Artificiais e a Máquina de Vetor Suporte para verificação dos problemas de classificações, buscando minimizar o número de classificações incorretas em comparação aos obtidos pela função discriminante. De acordo com os resultados avaliados, a Rede Neural obteve resultados satisfatórios com TEA a 0% enquanto que o método SVM obteve TEA de 14,44% a 67,41% enquanto que a de Anderson manteve TEA entre 18,89% a 74,07%. No entanto são necessários mais estudos quanto a utilização da SVM com base em algoritmos de otimização de busca para o espaço de parâmetros para pôr fim tentar alcançar resultados mais satisfatórios.