Detecção de outliers em séries espaço-temporais: análise de precipitação em Minas Gerais

Detalhes bibliográficos
Ano de defesa: 2012
Autor(a) principal: Silva, Alyne Neves
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Viçosa
BR
Estatística Aplicada e Biometria
Mestrado em Estatística Aplicada e Biometria
UFV
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://locus.ufv.br/handle/123456789/4061
Resumo: Séries temporais são algumas vezes influenciadas por interrupções de eventos, tais como greves, eclosão de guerras, entre outras. Estas interrupções originam observações atípicas ou outliers que influenciam diretamente na homogeneidade da série, ocasionando interpretações e inferências errôneas da variável sob estudo, sendo muito comum em dados climatológicos. Assim, com o interesse de detectar outliers em séries temporais de precipitação, o presente trabalho teve por objetivo estabelecer um método de detecção outliers. Para tal, realizou-se a junção da modelagem ARIMA e de uma das metodologias clássicas de geoestatística, a autovalidação. O critério proposto compara os resíduos da análise de séries temporais com intervalos de confiança dos resíduos da autovalidação. Foram analisadas séries temporais da precipitação média mensal por dias chuvosos de 43 estações pluviométricas localizadas no estado de Minas Gerais, entre os anos de 2000 a 2005. Os procedimentos de análise vão da descrição da periodicidade por meio do periodograma até a obtenção da autovalidação, à partir da estimação dos modelos de semivariograma pelos métodos de mínimos quadrados ordinários e máxima verossimilhança. Pelos resultados, para o período sob estudo, foram detectado 165 outliers, espalhados entre as 43 estações pluviométricas. A estação Fazenda Campo Grande, localizada no município de Passa Tempo, foi a estação em que se registrou o maior número de outliers, 45 no total. Conforme os resultados obtidos considerou-se o método proposto muito eficiente na detecção de outliers e, consequentemente, na análise da homogeneidade das observações.