Mirnacle: aprendizagem de máquina utilizando SMOTE e Random Forest para prover aumento da seletividade na predição ab initio de pre-miRNAs

Detalhes bibliográficos
Ano de defesa: 2015
Autor(a) principal: Marques, Yuri Bento
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Viçosa
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.locus.ufv.br/handle/123456789/7585
Resumo: Os microRNAs (miRNAs) são importantes reguladores da expressão gênica em plantas e animais. Assim, miRNAs estão envolvidos na maioria dos processos biológicos, tor- nando o estudo dessas moléculas um dos temas mais relevantes da biologia molecular atualmente. Uma estratégia para encontrar novos miRNAs é procurar seus precursores (pre-miRNAs), que são estruturas ligeiramente maiores (70-120 nt) e têm uma estru- tura secundária na forma de hairpin (grampo de cabelo). No entanto, caracterizar pre-miRNAs in vivo ainda é uma tarefa complexa. Como consequência disto, méto- dos in silico foram desenvolvidos para prever a localização genômica de pre-miRNAs. No entanto, as ferramentas computacionais atuais têm problemas de seletividade, isto é, uma grande quantidade de falsos positivos é reportada. Este trabalho apresenta uma extensão do método desenvolvido por Tempel e Tahi, 2012, com o objetivo de melhorar a seletividade através da técnica de aprendizagem de máquina denominada Random Forest, combinada com o método SMOTE, que lida com conjuntos de dados desbalanceados. Comparando o método proposto com outras importantes abordagens na literatura, mostramos que os procedimentos descritos neste trabalho puderam me- lhorar substancialmente a seletividade, sem comprometer a sensibilidade. Para três conjuntos de dados utilizados nos experimentos realizados, a abordagem proposta al- cançou pelo menos 97 % de sensibilidade e proporcionou um aumento de duas, vinte e seis vezes na seletividade, respectivamente, em comparação com os resultados de ferramentas computacionais atuais.