Detalhes bibliográficos
Ano de defesa: |
2020 |
Autor(a) principal: |
Barreira, João Carlos Fernandes |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Viçosa
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://locus.ufv.br//handle/123456789/28081
|
Resumo: |
Nesta dissertação estudamos a existência e a multiplicidade de soluções não triviais para o problema elíptico crítico ∗ −Δ p u = μu q−1 + u p −1 , x ∈ Ω, u(x) > 0, x ∈ Ω, u(x) = 0, x ∈ ∂Ω, (P μ ) em que Ω é um domínio limitado suave de R N , N ≥ p 2 , 2 ≤ p < q < p ∗ , p ∗ = pN/(N − p) é o expoente crítico de Sobolev, e μ um parâmetro positivo. Seguindo Azorero & Alonso [13], [14] e Alves & Ding [1], mostraremos a existência de, pelo menos, cat Ω (Ω) soluções não triviais para o problema (P μ ). Palavras-chave: Métodos Variacionais. Crescimento Crítico. Categoria de Lusternik- Schnirelman. |