Regional Heritability Mapping and GWAS for molecular breeding in eucalyptus hybrids

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Resende, Rafael Tassinari
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Universidade Federal de Viçosa
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.locus.ufv.br/handle/123456789/11670
Resumo: Although genome-wide association studies (GWAS) have provided valuable insights into the decoding of the relationships between sequence variation and complex phenotypes, they have explained little heritability. Regional heritability mapping (RHM) provides heritability estimates for genomic segments containing both common and rare allelic effects that individually contribute too little variance to be detected by GWAS. We carried out GWAS and RHM for seven growths, wood and disease resistance traits in a breeding population of 768 Eucalyptus hybrid trees using EuCHIP60K. Total genomic heritabilities accounted for large proportions (64 89%) of pedigree-based trait heritabilities, providing additional evidence that complex traits in eucalypts are controlled by many sequence variants across the frequency spectrum, each with small contributions to the phenotypic variance. RHM detected 26 quantitative trait loci (QTLs) encompassing 2,191 single nucleotide polymorphisms (SNPs), whereas GWAS detected 13 single SNP trait associations. RHM and GWAS QTLs individually explained 5 15% and 4 6% of the genomic heritability, respectively. RHM was superior to GWAS in capturing larger proportions of genomic heritability. Equated to previously mapped QTLs, our results highlighted genomic regions for further examination towards gene discovery. RHM-QTLs bearing a combination of common and rare variants could be useful enhancements to incorporate prior knowledge of the underlying genetic architecture in genomic prediction models.