Detalhes bibliográficos
Ano de defesa: |
2013 |
Autor(a) principal: |
Silva, Samara Leandro Matos da |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Viçosa
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.locus.ufv.br/handle/123456789/7931
|
Resumo: |
O objetivo principal desde trabalho ́e estudar a equação de Navier-Stokes não-estacionária (1)-(3). Mostraremos a existência, para n ≤ 4, e unicidade, para n ≤ 3, quando ν = ν 0 + ν 1 ||u|| 2 , com ν 0 , ν 1 > 0 constantes positivas. Também provaremos a existência, para n ≤ 4, quando ν = M (a(u)), onde a(u) = ||u|| 2 e M ́e uma função contínua e diferenciável. Para tanto, utilizaremos o Método de Galerkin aclopado com argumentos de compacidade e ponto fixo. |