Postharvest treatments of macaúba palm (Acrocomia aculeata) fruit: storage period, gamma radiation and drying temperature

Detalhes bibliográficos
Ano de defesa: 2015
Autor(a) principal: Tilahun, Wogayehu Worku
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Universidade Federal de Viçosa
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.locus.ufv.br/handle/123456789/6965
Resumo: Macaúba is a multipurpose oleaginous palm distributed in tropical and subtropical America with high biomass productivity and high oil content. It is a promising vegetable oil that can be used either as a source of edible or raw material in the biodiesel industry. However, random and bulk harvest within few months of the year coupled with rudimentary processing technology is becoming a bottleneck to exploit the potential benefit of this fruit. Therefore, storage and maintenance of postharvest oil quality is a major challenge in the production chain of macaúba. Development of postharvest technology packages fills some of the gaps in the current scenario. This fruit is endowed with high water content that impairs the mesocarp oil quality. Moreover, harvesting is synchronized with hot and rainy season of the year that enhances hydrolysis and oxidation processes. This can be facilitated by the endogenous lipase or microorganisms growing in association that boost hydrolysis of triacylglycerol to free fatty acids. Moreover, the presence of peroxidase favored oil oxidation. Accordingly, three successive and independent experiments concerned to postharvest of macauba fruits were conducted. The first experiment was aimed at assessing parameters related to oil quality, where ripe macaúba fruits were kept at room temperature for 0, 3, 6, 9, 12, 15, 20, 25, 30, 45 and 60 days. Hydrolysis and oxidation reactions were analyzed by biochemical activities (specific activity of lipase), physico-chemical properties of the mesocarp (water activity, moisture loss of fresh fruit, damage index) and physico- chemical properties of mesocarp crude oil (acidity index, peroxide index, molar absorptivity at 232 nm and 270 nm, total carotene content and oxidative stability) of the stored macaúba fruit. Increasing acidity and loss of oil stability along the storage was accompanied by reduction of moisture and increase in fruit decay. Lipase might not be related to increased acidification process. The stored crude mesocarp oil had oxidative stability of 31 days as per biodiesel standard. However, the overall quality of the oil maintained within the required standards up to 20 days. The second experiment was conducted to study the effect of gamma radiation in the mesocarp oil quality of macaúba fruit along the storage. Ripe fruits were treated with 3 gamma radiation doses (0, 4 and xii 8 KGy), stored at room conditions, and analyzed after 0, 10, 20 and 30 days. Mesocarp and exocarp water activity, mesocarp moisture and oil content, specific activity of lipase and peroxidase, and other physico-chemical properties of the crude mesocarp oil were studied. Gamma radiation decreased accumulation of oil as compared to control. The 8 KGy gamma dose resulted in oil oxidation. In general, decreased enzymatic activities and best oil quality was obtained with 4 KGy gamma dose along the 30 days of storage. The third experiment assessed the effect of drying temperature upon biochemical activity and physical-chemical properties of stored macaúba fruits. Ripe fruits, stored at room conditions, were dried with three drying temperatures (control, 60°C and 100°C) for 24 hours at four storage periods (0, 10, 20 and 30 days). Drying decreased water activities followed by enzymatic activities. Lipase was less stable to drying than peroxidase. Most oil quality indices, except acidity, were favored by drying after some time of storage. Macaúba fruits, dried at 100°C after 30 days stored, showed reduced enzymatic activities, increased oil content and suitable mesocarp oil quality. In general, direct fruit harvest from the plant conserved the desirable mesocarp oil quality of macaúba to be used as a raw material either in biodiesel or food industries with comparative advantage like oil palm. Macaúba fruits stored at ambient condition maintained the postharvest oil quality of the mesocarp for 20 days. This range extend to 30 days in 4 KGy gamma dose and for fruits dried after 30 day at 100°C with desirable mesocarp oil quality in storage. Despite the installation cost, these technological packages could be amplified either in subsitence or in large scale production schemes.