Identificação de outliers multivariados - Uma aplicação em dados de saúde

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Barbosa, Josino José
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Viçosa
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.locus.ufv.br/handle/123456789/10041
Resumo: A identificação de outliers desempenha um papel importante na análise estatística, pois tais observações podem conter informações importantes em relação aos dados. Se modelos estatísticos clássicos são cegamente aplicados a dados contendo valores atípicos, os resultados podem ser enganosos e decisões equivocadas podem ser tornadas. Além disso, em situações práticas, os próprios outliers são muitas vezes os pontos especiais de interesse e sua identificação pode ser o principal objetivo da investigação. Por isso, a finalidade desse trabalho é propor uma técnica de detecção de outliers multivariados, baseada em análise agrupamento e comparar essa técnica com o método de identificação de outliers via Distância de Mahalanobis. Para geração dos dados utilizou-se simulação através do Método de Monte Carlo e a técnica de mistura de distribuições normais multivariadas. Os resultados apresentados nas simulações mostram que o método proposto foi superior ao método de Mahalanobis tanto para sensibilidade quanto para especificidade, ou seja, ele apresenta maior capacidade de diagnosticar corretamente os indivíduos outliers e os não outliers. Além disso, a metodologia proposta foi ilustrada com uma aplicação em dados reais provenientes da área de saúde.