Redes neurais artificiais e análise discriminante linear como alternativas para seleção entre famílias de cana-de-açúcar
Ano de defesa: | 2014 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal de Viçosa
BR Estatística Aplicada e Biometria Mestrado em Estatística Aplicada e Biometria UFV |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://locus.ufv.br/handle/123456789/4075 |
Resumo: | Esse desafio advém da grande quantidade de genótipos avaliados e da dificuldade operacional da pesagem das parcelas do experimento, necessária nos principais métodos de seleção. O objetivo deste trabalho é comparar a modelagem por redes neurais, a análise discriminante linear de Fisher e a seleção de famílias usando a variável tonelada de cana por hectare estimada (TCHe) como alternativas para seleção de famílias promissoras em cana-de- açúcar com base nos caracteres indiretos número de colmos (NC), diâmetro de colmos (DC) e altura de colmos (AC). Incialmente foi feita a modelagem via redes neurais em 4 diferentes cenários: com simulação e com padronização das variáveis; com simulação e sem padronização das variáveis ; sem simulação e com padronização das variáveis; e sem simulação e sem padronização das variáveis. Os piores resultados ocorreram no cenário 4, sem padronização e sem simulação e os melhores ocorreram no cenário 1, onde as variáveis foram padronizadas e foram simulados valores de DC, NC, AC e TCHR para 1000 famílias. Posteriormente, foi feita a modelagem via análise discriminante no melhor cenário, ou seja, naquele onde houve simulação e padronização das variáveis de entrada. Para avaliação dos métodos redes neurais, análise discriminante e seleção via TCHe - foi utilizada a taxa de erro aparente (TEA) e a taxa de erro 1 (TE1) obtidas a partir da matriz de confusão. A simulação e a padronização melhoram o desempenho das redes neurais. A modelagem via redes neurais artificiais e a análise discriminante linear de Fisher fornecem melhores resultados quando comparadas a estratégia usualmente utilizada, que é baseada na estimação da variável tonelada de cana por hectare. Comparando os modelos de redes neurais com a análise discriminante, a rede neural fornece melhores resultados. |