Um estudo do teste não paramétrico de Kohli aplicado em Conjoint Analysis
Ano de defesa: | 2011 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal de Viçosa
BR Estatística Aplicada e Biometria Mestrado em Estatística Aplicada e Biometria UFV |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://locus.ufv.br/handle/123456789/4042 |
Resumo: | Neste trabalho avaliou-se o teste não paramétrico proposto por Kohli (1988), denominado teste h, para acessar a significância de atributos na Conjoint Analysis (CA). O referido teste foi comparado ao teste F da ANOVA (Análise de variância) com a execução de ambas as metodologias em 48 conjuntos de dados, sendo cada um a simulação da avaliação por 48 consumidores para oito tratamentos. Foram geradas notas de intenção de compra (ou preferência) numa escala ordinal formada pelos números inteiros de 1 a 9, sendo nota 1 para o tratamento menos preferido e 9 para o mais preferido, à semelhança de estudos realizados na área de Ciência e Tecnologia de Alimentos. Tomou-se como referência um modelo de CA aditivo e sem interação entre os atributos, com três atributos (A, B e C) e dois níveis cada, para formar os oito tratamentos num esquema fatorial completo 23. Foram definidos quatro cenários especificados por suas distintas Importâncias Relativas (IR%) entre os três atributos (e consequentemente amplitudes distintas entre os coeficientes de preferência): Cenário 1 – IRA = 60%, IRB = 30% e IRC = 10%; Cenário 2 – IRA= 40%, IRB = 40% e IRC = 20%; Cenário 3 – IRA = 35%, IRB = 35% e IRC = 30% e Cenário 4 – IRA = 5%, IRB = 45% e IRC = 50%. Para cada cenário, as notas foram geradas com erro aleatório seguindo duas distribuições de probabilidades distintas, ambas com média zero e desvio-padrão sigma (σ): distribuição normal e não normal (em forma de U). Adicionalmente, para cada uma destas duas distribuições foram utilizados diferentes valores de sigma (σ = 1,5; 2,0; 2,5; 3,0; 3,5 e 4,0). Concluiu-se que o teste h proposto por Kohli (1988) não deve ser recomendado com o intuito de apontar um atributo como significativo ou não, pois a utilização desse teste não permitiu relacionar a significância de um atributo com: (1) magnitude da importância relativa estimada na CA, (2) amplitude das estimativas dos coeficientes do modelo de regressão utilizado na CA comparada à magnitude da variância do erro aleatório do modelo, (3) ambas (1) e (2). Surpreendentemente, mesmo na ausência de normalidade do erro aleatório do modelo, o que teoricamente deveria desfavorecer o teste F da ANOVA em favor do teste h de Kohli (1988), este não se sobressaiu. |