Functional analysis of the thioredoxin system during seed germination in Arabidopsis thaliana

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: Nascimento, Carolina Pereira
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Universidade Federal de Viçosa
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://locus.ufv.br//handle/123456789/27704
Resumo: A series of processes occurs during seed formation, including remarkable changes from early development to the end of germination. The changes associated with processes initiated mainly after seed imbibition are usually characterized by extensive changes in redox state of seed reserve proteins and of pivotal enzymes for protein mobilization and usage. Such changes in redox state are often mediated by Thioredoxins (Trxs), which are protein oxiredutases capable of catalyzing the reduction of disulfide bonds in target proteins, thereby regulating their structure and function. Here, we analyzed the previously characterized mutants of NADPH-dependent Trx reductase A and B (ntra ntrb), two independent mutant lines of mitochondrial thioredoxin o1 (trxo1) and two mutant thioredoxin h2 (trxh2) mutant lines. Our results indicate that plants deficient for the NADPH-dependent thioredoxin system are able to mobilize their reserves, but at least partially fail to use these reserves during germination, thereby leading to lower availability of energy substrates than wild type seeds. Trx mutants also show decreased activity of regulatory systems needed to maintain cellular homeostasis. Moreover, we observed reduced respiration in mutant seeds and seedlings, which in parallel with an impaired energy metabolism, disrupts core biological processes responsible for proper germination and early development of Trx mutants. In conclusion, the results suggest that the lack of thioredoxin induces a substantial adaptation in seeds and seedlings, which undergo a metabolic reprogramming to adapt to a new redox state.