Classificação supervisionada de solos por redes neurais artificiais na Serra do Cipó - MG

Detalhes bibliográficos
Ano de defesa: 2009
Autor(a) principal: Souza, Eliana de
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Viçosa
BR
Fertilidade do solo e nutrição de plantas; Gênese, Morfologia e Classificação, Mineralogia, Química,
Mestrado em Solos e Nutrição de Plantas
UFV
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://locus.ufv.br/handle/123456789/5456
Resumo: A classificação supervisionada de solos, especialmente nas últimas décadas, vem sendo realizada com o auxílio de modelos matemáticos e estatísticos, dentre os quais destaca-se o modelo de redes neurais, o qual tem apresentado exatidão superior quando comparado com métodos clássicos, como o de Máxima Verossimilhança (MaxVer), auxiliando no método convencional de mapeamento. No entanto, na maioria dos trabalhos foram avaliadas as propriedades dos solos, sendo o estudo das classes de solos ainda incipiente. Assim, este trabalho teve como objetivo realizar a classificação de solos por redes neurais e pelo MaxVer para uma área situada na Serra do Cipó, no estado de Minas Gerais. Para tanto, utilizaram-se informações analíticas de 55 perfis de solos, classificados até o quarto nível categórico do Sistema Brasileiro de Classificação de Solos. As unidades do mapa de solos foram compostas por semelhanças entre as propriedades físicas do solo e as características do ambiente. As variáveis discriminantes avaliadas na classificação foram seis cenas da imagem do satélite Landsat, sensor ETM+; quatro índices derivados dessa imagem (Clay minerals, Ferrous minerals,Iron oxide e NDVI); modelo digital de elevação e atributos derivados: altitude, declividade, índice topográfico combinado, face de exposição, radiação solar, curvatura e amplitude altimétrica, além dos mapas geológico e pedológico. A partir desse conjunto de variáveis, identificaram-se aquelas que melhor contribuíram na discriminação dos solos, em cada uma das duas abordagens empregadas. Na classificação pelas redes neurais foram empregados o simulador Stuttgart Neural Network Simulator e o algoritmo backpropagation, sendo a arquitetura e os parâmetros selecionados por meio de tentativas e testes de significância estatística. Os resultados obtidos por ambos os classificadores, redes neurais e MaxVer, foram comparados entre si, utilizando-se a validação dos mapas com pontos de referência terrestre. Os mesmos pontos de referência foram utilizados para validar o mapa de solos obtido pelo método convencional de mapeamento. Os mapas obtidos pelos dois classificadores, utilizando o conjunto de varáveis que proporcionou melhor desempenho do classificador, apresentaram índice de exatidão considerado bom, sem diferença estatística na exatidão global dos mapas. O mapa melhor classificado pelo MaxVer apresentou índice kappa de 0,58, enquanto que, pelas redes neurais, o maior índice foi de 0,60. Esses valores não diferiram estatisticamente, entretanto, os classificadores diferiram na discriminação das unidades de solo, sendo duas unidades melhor classificadas pelo MaxVer, três pelas redes neurais e quatro unidades com exatidão estatisticamente igual para os dois classificadores. A exatidão global do mapa obtido pelo método convencional de mapeamento foi de 82%, sendo esse índice calculado pelo somatório dos solos de referência concordantes com qualquer componente da unidade. Os solos no primeiro componente das unidades de mapeamento apresentaram 48% de concordância com solos de referência.