Predição da radiação solar por meio de modelagem linear (ARX e ARMAX) e modelagem não-linear (Redes Neurais)

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Silva, Vinicius Leonardo Gadioli da
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Viçosa
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.locus.ufv.br/handle/123456789/10411
Resumo: O conhecimento da radiação solar é de vital importância para caracterizar o clima de uma região. A radiação solar está diretamente ligada aos fenômenos meteorológicos e aos componentes atmosféricos no planeta. Nos últimos anos as redes meteorológicas brasileiras têm introduzido numerosas estações automáticas que permitem monitorar a irradiação solar global em escalas horárias. Historicamente a medição de dados climáticos em larga escala dava suporte às atividades ligadas a aviação e agricultura. Seu uso em aplicações na área de arquitetura ou engenharia passou a receber atenção apenas nos últimos 40 anos. Com o desenvolvimento exponencial da tecnologia, a utilização de ferramentas baseadas em simulação computacional tem tomado espaço nas mais diversas áreas. A necessidade de se ter um bom modelo matemático que possa descrever adequadamente, um processo constitui-se sempre em um desafio, uma vez que o desempenho dos sistemas de controle baseados em modelos irá depender significativamente da precisão alcançada pelo modelo matemático. No projeto de sistemas de controle baseados em modelos preditivos, deve ser possível capturar o comportamento dinâmico do processo ou sistema em condições realísticas e, ainda, buscar encontrar o modelo o mais simples possível visando otimizar os recursos computacionais. No presente trabalho as variáveis de interesse foram as composições de radiação, dada sua importância tanto para agricultura quanto para geração de energia fotovoltaica e solar térmica. Para a simulação, os dados horários de todos os anos foram agrupados em um único arquivo. Deste modo, utilizou-se metade dos dados para criação dos modelos e metade para validação. Durante as simulações, a Radiação Global Horizontal foi definida como entrada e as demais como saída. Vale ressaltar que para cada variável foi realizada uma nova simulação. A utilização da modelagem linear (ARX e ARMAX) para predição de dados de radiação solar mostrou-se eficiente para as composições: Extraterrestre Normal (Erro Quadrático Médio = 2,51%), lnfravermelha (Erro Quadrático Médio 1,40%) e Extraterrestre Horizontal (Erro Quadrático Médio = 7,15%). Na modelagem não-linear (redes neurais), a radiação foi utilizada como entrada e a temperatura como saída da rede. Em termos de intervalos, e mais simples criar pequenos intervalos para uma variável com menor ordem de grandeza, como é o caso da temperatura, uma vez que demanda um volume menor de dados de entrada e saída para classificação. As redes multi/ayer perceptron (MLP) foram aplicadas desempenhando a tarefa de classificação de padrões. Criaram-se duas camadas de rede feed-fon/vard. A primeira camada utilizou a função de transferência tangente hiperbólica e, a segunda camada utilizou a função de transferência linear. A simulação que gerou menor grau de acerto, 74,48%, foi a que utilizou a radiação global horizontal como entrada e 3 neurônios na camada escondida. A que apresentou maior taxa de acerto, 90,32 %, foi a que utilizou radiação infravermelha horizontal como entrada e 2 neurônios na camada escondida. Por fim, pôde-se concluir que a modelagem linear mostrou-se mais eficiente que a não-linear na predição de dados de radiação solar abordados neste trabalho. Sua implementação e mais simples sob ponto de vista computacional e foi suficientemente eficiente para a geração de um banco de dados compatível com o que se desejava, apresentando erros aceitáveis e descrevendo o sistema de forma compatível com o real.