Aplicação de Redes Bayesianas na Identificação de Perigos em Sistemas de Abastecimento de Água para Consumo Humano: Estudo de caso no Município de Viçosa-Minas Gerais
Ano de defesa: | 2011 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal de Viçosa
BR Geotecnia Doutorado em Engenharia Civil UFV |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://locus.ufv.br/handle/123456789/837 |
Resumo: | Este trabalho tem por objetivo aplicar os princípios das redes Bayesianas como ferramenta para estimar a probabilidade de ocorrência dos perigos na bacia hidrográfica, manancial de captação e rede de distribuição e o uso do Sistema de Análise de Perigos e Pontos Críticos de Controle (APPCC) para identificar perigos em cada etapa da estação de tratamento de água, por meio de estudo de caso envolvendo o município de Viçosa (Minas Gerais/Brasil). Para auxiliar na identificação de perigos associados ao sistema de abastecimento de água no âmbito da bacia hidrográfica, zona de captação e rede distribuição foi adotado um classificador probabilístico, denominado de algoritmo de aprendizagem Bayesiana, utilizado na construção da rede Bayesiana. Na modelagem da rede Bayesiana, utilizouse o UnBBayes, um software de domínio público desenvolvido pelo Grupo de Inteligência Artificial da Universidade de Brasília (UnB). Na estação de tratamento de água foi utilizado o Sistema de Análise de Perigos e Pontos Críticos de Controle (APPCC) para identificar é priorizar os perigos em cada etapa do tratamento (coagulação / mistura rápida, floculação, decantação, filtração rápida e desinfecção). A identificação de perigos e a caracterização dos riscos foram feitas, a partir de um levantamento de dados secundários e primários, em todo o sistema de abastecimento de água. Para determinar a probabilidade de ocorrência dos eventos perigosos na bacia hidrográfica, zona de captação e rede de distribuição foi necessário definir as probabilidades de distribuição a priori para construção da rede Bayesiana. A determinação da probabilidade a posteriori foi obtida a partir das informações colhidas em campo. As informações a priori na bacia hidrográfica foram obtidas, por meio de uma consulta aos especialistas utilizando o método Delphi. Para a realização da consulta foi elaborado um questionário, com as variáveis classificadas em eventos perigosos, enviado aos especialistas que atuam nas áreas de hidrologia, recursos hídricos, qualidade de água, solos e geoprocessamento. As variáveis selecionadas foram o uso e ocupação da superfície do solo, disponibilidade hídrica, atividades urbanas, industriais, dentre outras características do solo, declividade, cobertura vegetal e escoamento superficial. Os resultados sistematizados junto aos especialistas foram utilizados na definição das tabelas de probabilidade de distribuição a priori para construção da rede Bayesiana. O resultado da aplicação da rede criada com o software UnBBayes, para a determinação da probabilidade de ocorrência dos eventos perigosos na bacia hidrográfica contribuinte à zona de captação, apresentou uma probabilidade a posteriori de 78,53% para que a ocorrência de eventos perigosos na bacia hidrográfica que contribuíssem para alteração da qualidade da água na zona de captação. Esse nível de perigo foi classificado como alto, resultando em um manancial com eventos perigosos potencialmente significativos que possam interferir diretamente na qualidade da água e, consequentemente, no seu tratamento. Na zona de captação foi determinada a probabilidade de ocorrência do nível de contaminação com relação aos perigos associados à bacia hidrográfica do Ribeirão São Bartolomeu. O resultado da aplicação do modelo de classificação Bayesiana na zona de captação apresentou uma probabilidade alta (90%) para o nível de contaminação microbiológico e baixa (70% e 99%) para os níveis de contaminação biológicos e químicos, respectivamente. Na estação de tratamento de água (ETAI / SAAE) a aplicação da ferramenta árvore de decisão foi utilizada para a identificação dos Pontos Críticos de Controle (PCC) e Pontos de Atenção (PA) para detectar os perigos vírus, bactérias e protozoários. Foi identificado, apenas PCC para protozoários como perigo em todas as etapas do tratamento, exceto na desinfecção que foi identificada com Ponto de Atenção (PA). Para os perigos decorrentes de bactérias e vírus, foram identificados PCC apenas para filtração. O resultado da aplicação do método da árvore de decisão em cada etapa da estação de tratamento de água foi coerente com o resultado histórico do monitoramento da estação de tratamento (ETA-I / SAAE). Assim, o sistema APPCC apresentou-se como ferramenta preventiva, sendo adequada para identificar os perigos inerentes ao abastecimento de água. Forneceu indicações importantes, do ponto de vista de definição de prioridades e de adoção de medidas preventivas ou mesmo corretivas, ao invés de apenas remeter à avaliação da qualidade final do produto. A aplicação do modelo de classificação Bayesiana na rede de distribuição apresentou probabilidade de ocorrência de perigo para as variáveis física (80%) e hidráulica foram (60%) altos. Já a variável qualidade da água obteve valor baixo (60%). A inferência Bayesiana tem ganhado cada vez mais espaço, sendo utilizada em inúmeros trabalhos para tomada de decisão na bacia hidrográfica, bem como no sistema de abastecimento de água. Por fim, mesmo com algumas limitações deste estudo, conclui-se que a aplicação de técnicas de inferências Bayesianas pode ser utilizada como ferramenta de identificação de perigos em sistemas de abastecimento de água para consumo humano, com base nos preceitos dos Planos de Segurança da Água. |