Detalhes bibliográficos
Ano de defesa: |
2015 |
Autor(a) principal: |
Carneiro, Vinícius Quintão |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Viçosa
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.locus.ufv.br/handle/123456789/6785
|
Resumo: |
Os programas de melhoramento vegetal atualmente utilizam-se de análises estatísticas para auxiliar na identificação de genótipos superiores em diversas etapas do desenvolvimento de um cultivar. Diferentemente dessas análises que são baseadas no paradigma estocástico, a abordagem da inteligência computacional tem sido pouco explorada na área do melhoramento genético. Assim, esse trabalho foi realizado com o objetivo de apresentar técnicas de inteligência computacional como ferramentas auxiliares no melhoramento do feijoeiro. Para demonstrar a aplicabilidade dessa abordagem, foram desenvolvidos dois estudos utilizando dados de avaliação de linhagens de feijão oriundas do Programa Feijão da Universidade Federal de Viçosa. Em um primeiro trabalho o objetivo foi avaliar o potencial das redes neurais artificiais como ferramenta auxiliar no melhoramento da arquitetura de plantas do feijoeiro. Com o intuito de classificar linhagens quanto ao porte, as redes neurais artificiais foram treinadas com dados de repetição de 19 linhagens de feijoeiro avaliadas nas safras de inverno de 2007 e de 2009, quanto a arquitetura de plantas, diâmetro do hipocótilo e altura de plantas. As redes neurais artificias apresentaram elevada capacidade de classificação correta das linhagens avaliadas, de forma que quando utilizado diâmetro do hipocótilo em conjunto com altura média de plantas, as redes neurais artificiais apresentaram melhores resultados do que utilizando somente o diâmetro do hipocótilo. Também observou-se que submeter dados de médias de novas linhagens às redes neurais treinadas com dados de repetição, provê melhores resultados de classificação das linhagens. Em um segundo trabalho o objetivo foi aplicar a Lógica Fuzzy, por meio de controladores, como ferramenta auxiliar na avaliação do comportamento de linhagens de feijão em diferentes ambientes. Para avaliar a aplicabilidade desses controladores foram utilizados dados de produtividade de grãos de 23 linhagens e duas testemunhas de feijão do grupo comercial vermelho, avaliados em nove ambientes da Zona da Mata de Minas Gerais. A partir dos parâmetros da análise de Eberhart e Russell foram desenvolvidos controladores fuzzy com sistemas de inferência Mamdani e Sugeno. Além destes, foi desenvolvido um controlador híbrido do tipo Sugeno baseado nos métodos de Eberhart e Russell e de Lin e Binns modificado. Foram realizadas análises de adaptabilidade e estabilidade pelos métodos de Eberhart e Russell e de Linn e Binns modificado e os respectivos parâmetros e medidas obtidos por meio dessas análises para cada linhagem foram submetidos aos respectivos controladores. Verificou-se que os controladores fuzzy podem ser aplicados para determinar o comportamento das linhagens, sendo o controlar híbrido o mais informativo a respeito da resposta das linhagens frente às variações ambientais. Dentre os sistemas de inferência utilizados, ambos sistemas apresentaram resultados consistentes. Uma vez que os controladores foram desenvolvidos de forma generalizada eles podem ser aplicados na determinação do comportamento de genótipos e na recomendação de cultivares de diferentes culturas agronômicas. Ao observar os resultados obtidos em ambos os trabalhos verificou-se que as técnicas de inteligência computacional apresentam grande potencial para serem empregadas nas diferentes etapas de um programa de melhoramento. |