Explorando o tratamento matricial para uma introdução aos números complexos
Ano de defesa: | 2013 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal de Viçosa
BR Ensino de Matemática Mestrado Profissional em Matemática em Rede Nacional UFV |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://locus.ufv.br/handle/123456789/5883 |
Resumo: | O objetivo deste trabalho é dar um enfoque mais geométrico na introdução dos números complexos, de forma a torná-los mais compreensíveis e eliminando a ideia de números estranhos e de difícil compreensão.Para alcançar tal objetivo far-se-á um estudo das propriedades operatórias das matrizes 2x2 do tipo [ a −b b a ] , com a, b ϵR, chegando ao resultado de que tais matrizes formam um corpo. Em seguida associa-se tais matrizes a pontos do plano R2. A partir desta associação obtém o resultado que multiplicar um vetor por uma matriz deste tipo corresponde a efeturar um giro e multiplicá-lo por um escalar. A partir daí faz a correspondência biunívoca entre as matrizes e os números complexos de forma que todas as propriedades estudadas no item anterior permanecem verdadeiras. Como resultado desta correspondência obtemos que multiplicar por i2 corresponde a um giro de 180o , isto é, manter a direção e inverter o sentido o que corresponde a multiplicar por (−1), ou seja que i2 = −1. Desta forma chega-se ao resultado que normalmente é apresentado aos alunos na introdução dos números complexos porém com um significado que outrora não possuía. A seguir fez um estudo da conformidade e deformação das transformações através de funçõeoes de variáveis complexas.Com esta abordagem fica facilitada a compreensão por parte dos alunos dos seus conceitos e mesmo a função dos mesmos, para concluir apresentamos uma situação prática em que se utiliza os números complexos. |