Uso de modelos de regressão aleatória na análise de dados longitudinais no melhoramento genético vegetal

Detalhes bibliográficos
Ano de defesa: 2005
Autor(a) principal: Araújo, Simone Inoe
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Viçosa
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.locus.ufv.br/handle/123456789/10547
Resumo: Os objetivos deste estudo foram analisar, via simulação de dados, o efeito de diferentes pressuposições quanto à variância dos efeitos ambientais, frente a dados com determinada estrutura de variâncias, e verificar o comportamento de diferentes estratégias de análise frente ao desbalanceamento dos dados. Foram simulados dados referentes a um teste de progênie, do cruzamento de 30 progenitores masculinos com três genitores femininos diferentes cada um, onde cada cruzamento deu origem a dez indivíduos, distribuídos em três locais diferentes. O efeito fixo de local foi gerado de forma a não apresentar diferenças estatísticas significativas. Para cada indivíduo da prole foram geradas informações fenotípicas em cinco idades diferentes. Portanto, o arquivo de dados consistiu de 1020 indivíduos no total, sendo que 900 indivíduos apresentaram registros nas cinco idades, totalizando 4500 registros de produção. Para estudar o efeito da heterogeneidade das variâncias ambientais, em modelos de regressão aleatória adotou-se, modelos que ajustaram uma função polinomial de segundo grau para o efeito genético aditivo e de ambiente permanente e que ajustaram uma função polinomial apenas para o efeito genético aditivo foram analisados, considerando-se ou não a heterogeneidade da variância do efeito de ambiente temporário, gerando-se assim, quatro diferentes modelos de regressão aleatória. Além disso, os modelos de regressão aleatória, repetibilidade e multi-característica foram avaliados sob diferentes níveis de desbalanceamento dos dados. O modelo de regressão aleatória mais adequado foi aquele que considerou a heterogeneidade de variâncias dos efeitos de ambiente permanente e temporário. Assumir pressuposições incorretas sobre a estrutura de covariância dos efeitos aleatórios do modelo conduziu à alterações nas estimativas de componentes de covariância e nas estimativas dos parâmetros genéticos. Sob desbalanceamento sem seleção, todos os modelos apresentaram estimativas de herdabilidade bastante semelhantes aos resultados obtidos quando se considerou o conjunto de dados completos. Entretanto, quando se considerou o efeito da seleção, modelos de regressão aleatória com até 10% de desbalanceamento não promoveram alterações nas estimativas de componentes de variância.