Detalhes bibliográficos
Ano de defesa: |
2015 |
Autor(a) principal: |
Amaral, Regiane Teodoro do |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Viçosa
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.locus.ufv.br/handle/123456789/7178
|
Resumo: |
Um dos principais desafios da biologia molecular é medir e avaliar os perfis de expressão gênica em diferentes tecidos biológicos com o objetivo de entender os mecanismos de transformação molecular. O método RNA-Seq usa transcriptoma a partir de tecnologias de sequenciamentos de nova geração (SNG), utilizados para sequenciar cDNA que é derivado de uma amostra de RNA, e, assim, produzir milhões de sequenciamentos de leitura. Porém, apesar do custo dessas tecnologias vir diminuindo, é comum realizar experimentos com pouca ou nenhuma repetição. Assim, torna-se necessária a descoberta e o aprimoramento de metodologias estatísticas eficientes para a otimização das análises de dados gerados em plataformas de sequenciamento de genomas. O objetivo geral desse trabalho consistiu na comparação de metodologias estatísticas a fim de estudar o padrão de expressão gênica relacionado à quantificação desses genes conforme determinadas condições/tratamentos, em experimentos de RNA-Seq. Para a realização das análises utilizou-se um conjunto de dados simulados através do pacote TCC do R, com diferentes cenários, para comparar os métodos estatísticos DESeq e baySeq. Foram exploradas tecnologias de RNA-Seq do perfil de expressão gênica de um banco de dados contendo 1000 genes em duas condições, nos cenários com cinco repetições, três repetições, 2 repetições e sem repetição. Em um primeiro momento, tais dados foram analisados pelos dois métodos separadamente, comparando-se o efeito do número de repetições dentro de cada um. Em seguida, foi realizada a comparação entre os métodos, levando em conta também o número de repetições em cada cenário. De acordo com os resultados gerados nas análises não podemos afirmar que um método, entre os avaliados, é ótimo em todas as circunstâncias, pois o método de escolha para uma situação em particular depende das condições experimentais. No entanto, sob as condições utilizadas no desenvolver do experimento, o método abordado pelo baySeq foi o que apresentou um bom desempenho, nas combinações ocorridas entre os métodos e os tipos de genes analisados, ou seja, esse foi o método que obteve uma maior capacidade de identificação dos genes diferencialmente expressos. |