Detalhes bibliográficos
Ano de defesa: |
2015 |
Autor(a) principal: |
Faêda, Felippe Moreira |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Viçosa
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.locus.ufv.br/handle/123456789/7562
|
Resumo: |
Este trabalho aborda o problema de sequenciamento de tarefas em máquinas parale- las não-relacionadas considerando restrições de precedência entre as tarefas e tempos de preparação dependentes da sequência e da máquina. Este problema tem como objetivo minimizar o tempo máximo de conclusão do sequenciamento, conhecido como makespan. Em problemas que consideram restrições de precedência, nenhuma tarefa pode iniciar seu processamento sem que todas as suas tarefas predecessoras tenham sido concluídas. Para resolver este problema foram desenvolvidos três mo- delos de programação linear inteira mista (PLIM), denotados por Modelo 1, Modelo 2 e Modelo 3. Em seguida, sete heurísticas construtivas foram desenvolvidas, deno- tadas por HC1 a HC7, as quais se diferenciam pelas regras de prioridade utilizadas. Neste trabalho também é implementado o método chamado Proximity Search (PS), que tenta determinar soluções ótimas para o problema. O método PS precisa de uma solução inicial e de um modelo base de PLIM. Neste método a função objetivo do modelo é substituída por uma função de proximidade e o conjunto de soluções viáveis é reduzido através da adição de cortes. A ideia é, iterativamente, resolver o modelo com a tentativa de melhorar a solução corrente. Foram desenvolvidas três versões do PS denotadas por P S1, P S2 e P S2RIN S . Neste trabalho também foram desenvolvidos algoritmos baseados em meta-heurísticas a fim de resolver o problema de forma aproximada. Primeiramente, foram desenvolvidas duas buscas locais denotadas por BL1 e BL2 baseadas na estratégia de inserção por vizinhança. Em seguida, foram implementadas duas meta-heurísticas: GRASP (Greedy Ran- domized Adaptive Search) e IG (Iterated Greedy). Experimentos computacionais e análises estatísticas foram realizados a fim de comparar o desempenho dos modelos, das versões do P S e das heurísticas propostas. De acordo com os experimentos, o Modelo 1 apresentou-se mais eficiente na qualidade das soluções obtidas e a heurís- tica HC7 mostrou-se mais eficiente na geração de uma solução razoavelmente boa. Além disso, as versões do PS obtiveram melhorias na qualidade da solução obtida e redução no tempo computacional gasto se comparado ao Modelo 1. Em seguida, o IG obteve desempenho significativamente melhor que o GRASP e o PS em relação à qualidade da solução final e a velocidade com que a solução corrente é melhorada. |