Identificação do uso da terra sob manejo agroecológico utilizando imagem de alta resolução e conhecimento local

Detalhes bibliográficos
Ano de defesa: 2010
Autor(a) principal: Portes, Raquel de Castro
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Viçosa
BR
Fertilidade do solo e nutrição de plantas; Gênese, Morfologia e Classificação, Mineralogia, Química,
Mestrado em Solos e Nutrição de Plantas
UFV
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://locus.ufv.br/handle/123456789/5455
Resumo: Este trabalho objetivou avaliar o potencial de classificadores automáticos e da metodologia empregada na classificação da comunidade residente na bacia para mapeamento do uso e cobertura do solo sob manejo agroecológico. A área de estudo é a Bacia do Rio São Joaquim, no município de Araponga, Zona da Mata mineira. Na metodologia, no primeiro momento, foi realizada a ida a campo onde foram coletados os Pontos de Controle Terrestre para georreferenciar imagem IKONOS II e as amostras de treinamento e validação das classes de uso e cobertura do solo através de GPS. Em laboratório, foram realizadas classificações supervisionadas automáticas pelos algoritmos da Máxima Verossimilhança, Redes Neurais Artificiais e Bhattacharya. Para cada algoritmo, foram feitas duas classificações, 17 e 14 classes. Uma classificação do uso e cobertura do solo foirealizada pelos moradores da bacia onde foram identificadas as classes de uso e cobertura do solo. As imagens classificadas foram levadas ao laboratório e transformadas em formato digital. Os resultados demonstram que dentre os classificadores automáticos, o Bhattachaya apresentou melhor resultado, Kappa 0,76, resultado muito bom para classificação da área em questão. Já o Kappa da imagem classificada pela comunidade foi de 0,55, resultado considerado bom de acordo com a literatura. Estes resultados demonstram que o algoritimo Bhatacharya é o mais eficiente para o mapeamento e que é possível que a comunidade local interprete o meio em que vive e possa realizar com autonomia mapeamentos para traçar estratégias futuras. Sendo assim, os resultados encontrados nesta pesquisa além de serem úteis para futuros planejamentos de pesquisa-ação na bacia hidrográfica em estudo, servirão como conhecimento universal para classificação do uso do solo em outras áreas com manejo agroecólogico.