Estimação do volume de madeira empilhada utilizando imagens digitais e redes neurais
Ano de defesa: | 2014 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal de Viçosa
BR Manejo Florestal; Meio Ambiente e Conservação da Natureza; Silvicultura; Tecnologia e Utilização de Mestrado em Ciência Florestal UFV |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://locus.ufv.br/handle/123456789/3169 |
Resumo: | Neste estudo é apresentado um sistema computadorizado para estimação do fator de empilhamento utilizando redes neurais artificiais NeuroDIC. O sistema foi utilizado em um estudo de caso de quantificação do volume de madeira empilhada sobre caminhões. O NeuroDIC foi desenvolvido utilizando a linguagem de programação Java. Como ambiente de desenvolvimento foram utilizados o IDE (Integrated Development Environment) Netbeans 7.1 e a JDK 7.3 (Java Development Kit). É uma ferramenta gratuita, que pode ser utilizada em qualquer sistema operacional. A madeira utilizada no estudo foi proveniente de um talhão pertencente a uma empresa de reflorestamento do centro-oeste paulista, plantado com um híbrido de Eucalyptus grandis x Eucalyptus urophylla, com idade de 8,5 anos, espaçamento de 3,0 X 3,0 m e empilhada sobre caminhões. Cada pilha carregada sobre os caminhões foi fotografada transversalmente ao comprimento das toras, a uma distância aproximada de 2,5 m. Em cada uma foram tiradas seis fotos, sendo uma da porção superior esquerda (SE), superior central (SC), superior direita (SD), inferior esquerda (IE), inferior direita (ID) e uma central (CE). O volume cúbico de cada pilha foi determinado pela cubagem de cada tora pela fórmula de Huber. O volume em estéreo foi calculado pela medição das dimensões da pilha no caminhão. Ao todo foram treinadas 420 redes e escolhidas 42 dentre elas, sendo uma para cada imagem. As redes foram aplicadas e cada imagem classificada foi comparada a imagem original visualmente, analisando a qualidade da classificação após aplicação das redes neurais. Foram obtidos 42 fatores de empilhamento no total. Foi calculada a média entre eles resultando em um fator de empilhamento médio. A diferença média entre o volume cúbico calculado no campo e pelo processamento digital de imagens utilizando RNA foi de 1,9%. Comparado ao processo convencional de cubagem de toda a carga para estimação do fator de empilhamento, houve redução de aproximadamente 90% dos custos da atividade ao adotar o processamento digital de imagens utilizando redes neurais artificiais. |