Detalhes bibliográficos
Ano de defesa: |
2019 |
Autor(a) principal: |
Pereira, Kaléo Dias |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Viçosa
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://locus.ufv.br//handle/123456789/25881
|
Resumo: |
Os estudos sobre as variáveis que determinam a qualidade do carvão vegetal e a influência do material de origem norteiam o planejamento de programas de seleção de melhores genótipos para a produção de carvão. O emprego de novos métodos de análise que se adequem ao estudo das propriedades do carvão vegetal, possibilita a avaliação dos dados por ângulos diferentes e amplia as possibilidades das pesquisas na área. Nesse sentido, o objetivo do presente trabalho foi utilizar procedimentos de aprendizagem de máquina e técnicas multivariadas na análise do rendimento e qualidade do carvão vegetal produzido a partir de clones de Corymbia. As amostras analisadas foram obtidas a partir de um plantio clonal com sete anos de idade estabelecido no município de Dionísio, MG. No primeiro capítulo são apresentados os resultados da utilização do algoritmo random forest no estudo da influência das propriedades da madeira sobre o rendimento e propriedades de qualidade do carvão vegetal, bem como a comparação da acurácia dos valores preditos pelo random forest com os preditos pelo support vector regression e regressão linear múltipla. As variáveis teor de holocelulose, relação cerne/alburno e densidade básica da madeira foram as mais importantes para a modelagem via aprendizagem de máquina. Quanto a acurácia, o random forest foi superior aos demais métodos considerando o coeficiente de determinação, correlação linear entre valores observados e preditos, erro médio absoluto e raiz quadrada do erro quadrático médio, inclusive mostrando desempenho adequado para que seja viável a utilização do algoritmo para a estimação das propriedades do carvão vegetal. No segundo capítulo relata-se o emprego da função discriminante de Fisher na classificação dos clones de Corymbia quanto ao potencial para a produção de carvão vegetal em termos de rendimento e qualidade. Os dados foram inicialmente testados quanto às pressuposições de normalidade multivariada e homogeneidade de matrizes de variâncias/covariâncias, para em seguida aplicar a análise de variância multivariada (MANOVA). Pelos resultados da MANOVA, constatou-se que existe diferença no campo multivariado entre os clones e, a partir das matrizes de soma de quadrados e produtos do resíduo e do efeito de clones, foram estimados os coeficientes das duas primeiras funções discriminantes, que juntas retiveram aproximadamente 80% da informação contida no conjunto de dados. As duas funções discriminantes foram utilizadas para calcular duas variáveis canônicas que são funções das variáveis observadas do carvão vegetal. Comparando os clones por meio das médias das variáveis canônicas, verificou-se que o genótipo AMF 1119 é o mais indicado para a produção de carvão vegetal. |