Detalhes bibliográficos
Ano de defesa: |
2017 |
Autor(a) principal: |
Lima, Leísa Pires |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Viçosa
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.locus.ufv.br/handle/123456789/10418
|
Resumo: |
A seleção genômica ampla (Genome Wide Selection – GWS) consiste na análise de um grande número de marcadores SNPs (Single Nucleotide Polymorphisms) amplamente distribuídos no genoma. As principais metodologias propostas e utilizadas na GWS se dividem em metodologias paramétricas, semi-paramétricas ou metodologias de redução de dimensionalidade. Dessa forma, um dos objetivos desse trabalho foi avaliar metodologias não paramétricas, denominadas Delta-p e Regressão Categórica Tripla (TCR), além de compará-las com métodos tradicionalmente aplicados a GWS, tais como G-BLUP (Genomic Best Linear Unbiased Predictor) e BLASSO (Bayesian Least Absolute Shrinkage and Selection Operator). O primeiro capítulo deste trabalho consiste em uma revisão de literatura sobre a GWS apresentando sua definição e importância no melhoramento genético, abordando sobre o desenvolvimento dos métodos propostos e avaliados e também retratando sobre o processo de validação utilizado para a comparação das metodologias. No segundo capítulo, foi proposto e analisado o método Delta-p e um índice de seleção, denominado índice Delta-p/G-BLUP que combina os valores genômicos provenientes do método G-BLUP com os valores genômicos estimados via Delta-p. Sob o contexto Bayesiano, foi incorporado ao LASSO Bayesiano, por meio de uma distribuição a priori altamente informativa, os valores genômicos estimados via G-BLUP, essa abordagem foi denominada método Bayes Híbrido. Para avaliar a eficiência dos métodos estatísticos, no que se refere à estimação dos valores genômicos aditivos e devidos à dominância, foram utilizados dados simulados, sendo estabelecidos oito cenários (dois níveis de herdabilidade × duas arquiteturas genéticas × ausência de dominância e dominância completa) sendo cada cenário simulado dez vezes. Os resultados do segundo capítulo indicaram que o índice Delta-p/G-BLUP e o Bayes Híbrido se mostraram eficientes para predição dos valores genômicos podendo ser usados vantajosamente na GWS. Ademais, no terceiro capítulo, foi avaliada a eficiência do método TCR em comparação com os métodos G-BLUP e BLASSO utilizando quatro cenários (dois níveis de herdabilidade × modelo infinitesimal × ausência de dominância e dominância completa) sendo cada cenário simulado dez vezes. Os resultados indicaram que o método TCR mostrou-se adequado para a estimação dos componentes de variação genômica e da herdabilidade. Em vista disso, uma metodologia baseada em uma modificação do método G-BLUP, denominada TCR/G-BLUP, foi proposta e consiste em estimar a herdabilidade via TCR e fixá-la nas equações de modelos mistos do método G-BLUP. A eficiência dos métodos G- BLUP e TCR/G-BLUP foram comparadas utilizando dados reais, seis caracteristicas avaliadas em mandioca (Manihot esculenta). O experimento foi instalado segundo um delineamento em blocos casualizados com três repetições e 10 plantas por parcela. Os resultados indicaram que o método TCR/G-BLUP foi capaz de aumentar a acurácia e fornecer valores genômicos não viesados se comparados ao método G-BLUP, sendo, portanto recomendado para a aplicação na GWS. |