Detalhes bibliográficos
Ano de defesa: |
2018 |
Autor(a) principal: |
Santos, Larissa Nunes dos |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Viçosa
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.locus.ufv.br/handle/123456789/20381
|
Resumo: |
O consumo de combustível de máquinas florestais é um dos componentes mais impactantes nos custos de colheita florestal e, por isso, grande importância é dada à sua redução. Objetivou-se com este trabalho predizer o consumo especifico de combustível do harvester em função de variáveis climáticas, dendrométricas e operacionais, utilizando modelos lineares mistos (MLM) e redes neuronais artificiais (RNA). Foi utilizado um harvester John Deere 1270E para derrubar e processar as árvores em toras. Os dados foram obtidos através do software instalado no computador de bordo da máquina TimberMatic (John Deere) e do Boletim de Apropriação de Equipamento (BAE). As variáveis contínuas utilizadas foram: diâmetro médio da tora e ângulo frontal da máquina. As categóricas: local de corte, tipo de manejo da floresta, clima, turno de trabalho, combinação de rotação do motor e nível de treinamento do operador. O consumo especifico de combustível foi usado como a variável resposta. No modelo linear misto os dados foram agrupados dentro da variável operador e, portanto, esta variável foi incluída como um intercepto aleatório. Para o emprego de RNA o banco de dados foi dividido aleatoriamente em: 70% dos dados para treinamento e 30% para validação das redes. O treinamento foi o do tipo supervisionado, o algoritmo de aprendizagem utilizado foi o resilient- propagation e a função de ativação usada na camada oculta e de saída foi a sigmoide. Para verificar a qualidade do MLM foram usados o Critério de informação de Akaike (AIC) e o coeficiente de determinação baseado no teste ). Como medidas de avaliação dos resultados da razão de verossimilhança (R LR gerados pelas redes, foi utilizada a correlação entre os valores observados e estimados, a raiz quadrada do erro quadrático médio (RQEM), o erro relativo percentual médio e a distribuição de frequência dos erros relativos percentuais. Para comparar os resultados gerados pelo MLM e a RNA foram utilizados o erro relativo percentual e a RQEM, além da distribuição dos erros. O valor R LR obtido para a MLM selecionada foi de 0,84. A rede que obteve menor RQEM na validação foi a que continha oito neurônios na camada escondida. A RQME encontrada para a RNA e MLM foi de 17,6189 e 20,9686 respectivamente, indicando maior exatidão na estimativa do consumo específico de combustível do harvester pela RNA. O MLM e RNA são eficientes na estimativa do consumo específico de combustível do harvester, com ligeira superioridade (exatidão) para a rede neuronal. |