Modelagem da função de incidência cumulativa na presença de riscos competitivos em análise de sobrevivência

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Tomaz, Flávia Sílvia Corrêa
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Viçosa
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.locus.ufv.br/handle/123456789/18406
Resumo: Riscos competitivos surgem em situações em que um indivíduo pode falhar devido à várias causas distintas. Na presença de riscos competitivos a estimação e/ou avaliação do efeito de covariáveis sobre a função de incidência cumulativa (subdistribuição) frequentemente é de interesse. Essa função quantifica a probabilidade de um indivíduo experimentar um evento específico, ou seja, falhar devido a uma determinada causa dentre um conjunto de causas de falha. A estimação não paramétrica da função de incidência, por vezes, é obtida por meio do complemento do estimador de Kaplan-Meier, embora esse procedimento não seja adequado e procedimento apropriado para este propósito esteja disponível. No que se refere a modelagem do efeito de covariáveis sobre a função de incidência, abordagens comumente difundidas baseiam-se ou no risco específico por causa ou no risco da subdistribuição. A primeira ignora a presença dos riscos competitivos, enquanto a segunda leva em consideração os riscos competitivos e frequentemente utiliza o modelo de Fine e Gray. Embora existam alternativas ao modelo de Fine e Gray, estas são pouco discutidas. Neste sentido, o objetivo deste trabalho foi avaliar a estimação da função de incidência cumulativa, bem como verificar como a censura e a relação entre proporção de eventos competitivos afetam a estimação dessa função. Ademais objetivou-se avaliar três modelos de regressão para a função de incidência (modelo de regressão com ligação logarítmica, modelo de regressão com ligação logit e modelo de Fine e Gray). Além de um conjunto de dados reais sobre lesões em cavalos foi utilizado também um estudo de simulação. Os resultados encontrados reforçam relatos encontrados na literatura, que apontam a superestimação da função de incidência cumulativa quando a mesma é estimada como complemento do estimador de Kaplan-Meier, bem como a não correspondência entre os efeitos das covariáveis estimados com base no risco específico por causa e o baseado no risco da subdistribuição. Por meio do estudo de simulação constatou-se que a percentagem de censura bem como a relação entre os eventos competitivos afeta a estimação da função de incidência cumulativa. Verificou-se também, que, em geral, o modelo de regressão com ligação logarítmica mostrou-se uma alternativa ao modelo de Fine e Gray.