Avaliação de krigagens através de indicadores locais para a agricultura de precisão

Detalhes bibliográficos
Ano de defesa: 2013
Autor(a) principal: Pinheiro, Wagner Rogério Ferreira
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Viçosa
BR
Estatística Aplicada e Biometria
Mestrado em Estatística Aplicada e Biometria
UFV
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://locus.ufv.br/handle/123456789/4067
Resumo: O agronegócio abrange uma vasta cadeia de atividades produtivas. Pode-se destacar como uma das atividades deste ramo a agricultura de precisão que se vale frequentemente de informações georreferenciadas para descrever por meio de mapas a variabilidade espacial de determinadas áreas. Uma técnica que apresenta relevada importância para este contexto é a Geoestatística, pois proporciona a obtenção de mapas temáticos, considerando a estrutura de dependência espacial do fenômeno em estudo. Assim este estudo apresenta um procedimento para identificar subáreas destinadas ao plantio considerando a dependência espacial da variável de interesse sem a necessidade de categorização. Para tanto são abordadas metodologias de álgebra de mapas com a intenção de incorporar medidas de associação estatística de forma local. Desde modo, foi utilizado o método de Krigagem Ordinária presente na Geoestatística e para medir a concordância dos mapas temáticos utilizou-se o índice Kappa e a coeficiente de correlação linear global e local. Como resultados principais pode-se destacar que a concordância entre os mapas de forma localizada evidencia que os modelos de dependência espacial utilizados na Krigagem Ordinária exercem influência local na definição dos mapas temáticos utilizados na agricultura de precisão, aspecto esse que não é captado se utilizadas (para o caso agrícola), codificações dos valores interpolados (zonas de manejo) e destas extrair-se índices globais de concordância.