Aplicação de mineração de textos e análise de sentimentos a postagens do Twitter acerca das vacinas contra a Covid-19

Detalhes bibliográficos
Ano de defesa: 2022
Autor(a) principal: Farias, Franciele Leal
Orientador(a): Oliveira, Lorena Sophia Campos de
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: UFVJM
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Link de acesso: https://acervo.ufvjm.edu.br/items/283923cb-286a-40b4-bbb4-df5450e0250f
Resumo: A pandemia da Covid-19 é o maior problema sanitário do século XXI e já ceifou a vida de milhares de pessoas. A rapidez com que a doença se espalhou e modificou a vida da população mundial gerou uma grande quantidade de emoções e sentimentos nas pessoas. Desde a descoberta do novo coronavírus, iniciou-se uma corrida pelo desenvolvimento de uma vacina que fosse eficaz para o combate da doença, crescendo o anseio da população pela sua chegada. O trabalho realiza a análise dos sentimentos que a população brasileira desenvolveu em relação às vacinas criadas para o combate da Covid-19, por meio da utilização das técnicas de análise de sentimento e mineração de dados. A construção do banco de dados ocorreu através da captação de postagens públicas disponibilizadas pela API do Twitter. O algoritmo desenvolvido durante a pesquisa é baseado na linguagem de programação Python e implementado na plataforma Jupyter Notebook. O processo de análise de sentimentos foi realizado através da análise semântica, com uso do dicionário de léxicos para a língua portuguesa SentiLex-PT.