Uso de ésteres leves do biodiesel produzido do óleo da amêndoa da gueiroba (Syagrus oleracea (Mart.) Becc), para compor, em mistura com querosene mineral, combustível de aviação

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: Chagas, Samuel Peres
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Uberlândia
Brasil
Programa de Pós-graduação em Biocombustíveis
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufu.br/handle/123456789/27163
http://dx.doi.org/10.14393/ufu.di.2019.2401
Resumo: The continuous global search for alternative energy sources, particularly over the last few decades, has been, to a significant extent, focused on biofuels, which play a critical role in reducing the dependence of fossil sources and, in consequence, keep the proportion of greenhouse gases in the Earth atmosphere under environmentally rational levels. As far as the air transport is concerned, increasing efforts have been so far essentially directed to the development of industrial biomass-derived paraffinic fuels. The here reported development approach is differently devoted to separate the lighter (shorter molecular chains) fraction of the fatty acid methyl esters (FAME’s biodiesel) obtained through the KOH-homogeneously catalyzed transesterification reaction by the methyl route of triacylglycerol’s in the Soxhlet-extracted gueiroba kernel (Syagrus oleracea (Mart.) Becc) oil. The biodiesel fractioning under atmospheric distillation with heat-insulated glass-column, under atmospheric pressure was completed through 59.79% in a volumetric basis, of lighter esters (light biodiesel, LB), of the total biodiesel volume constituting as an innovative methodology for biofuel production. The lighter biodiesel was blended with aviation mineral kerosene Jet-A1 (cf. the ASTM international denomination, corresponding to the QAV-1, as denominated by the Brazilian official petroleum agency) in mixtures of 2%, 5%, 10%, and 20%, for which the values of density, water content, distillation analysis, flashpoint, calorific value, and freezing point were determined, in order to check for their compliance with the official recommendations. Chromatographic analysis verified the technical viability of the atmospheric distillation process for FAME's concentration. Blends containing up to 5% LB were found to fulfill characteristics to become conformed fuels to replace the Jet-A1 kerosene as fuel for airplanes.