Biossorção de cromo hexavalente em cascas de frutas
Ano de defesa: | 2013 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal de Uberlândia
BR Programa de Pós-graduação em Engenharia Química Engenharias UFU |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://repositorio.ufu.br/handle/123456789/15213 |
Resumo: | The pollution caused by heavy metals has been becoming a serious environmental problem. The use of biomass as sorbent material for the treatment of industrial effluent containing heavy metals arises as a promising alternative for the current technologies. The waste that contains these metals may cause damages to the environment and to the human health. Even chrome, which is a essential metal, can be harmful in high concentrations; therefore, the proposal of this work was to evaluate the capacity of adsorption of chrome, using as biosorbent orange (pêra rio) and jabuticaba produced in the region of Triângulo Mineiro and the green coconut shell (cocus nucífera). The synthetic effluent, prepared from potassium dichromate reagent, was treated with this material previously dried, grinded and separated by granulometric analysis. The process was carried out isothermally in jacketed batch reactors continuously agitated. The mixture polluted by chrome in its metal nature was treated for a period up to twenty four hours. It was analysed the influence of pH in the process, being tested 2, 6 and 10. The efficiency of the biosorbent material, its granulometry, the influence of pH and the equilibrium concentration were the variables evaluated. The isothermal equilibrium data were adjusted employing the linear models of Langmuir and Freundlich. It was verified that Freundlich s adsorption isotherm was the one that fitted the best with the equilibrium data. The data were also adjusted to the kinetic models of pseudo first-order and pseudo second-order, and the pseudo-second order was the most representative for the data. With respect to the kinetic parameters, the process is spontaneous, it is endothermic when coconut shells and jabuticaba are used and exothermic when orange peels are used. |